Logica (I&E)
najaar 2017
http://liacs.leidenuniv.nl/~vlietrvanl/logica/
Rudy van Viiet
kamer 140 Snellius, tel. 071-527 2876
rvvliet(at)liacs(dot)nl

college 8, maandag 30 oktober 2017

1.5. Normal forms
1.6. SAT solvers

Als iedereen zijn taak doet speel je op zijn minst gelijk.
1


http://liacs.leidenuniv.nl/~vlietrvan1/logica/

A slide from lecture 7:

1.5.3. Horn clauses and satisfiability
Example.

(pAgAs—=>p)A(gAT—=pP)AN(pAs—s)

(p2 Ap3 Aps = p13) A(T = p5) A(ps Ap11 — L)



A slide from lecture 7:

Deciding satisfiability for Horn formulas

function HORN(¢)
/* precondition: ¢ is a Horn formula */
/* postcondition: HORN(¢) decides the satisfiability for ¢ */
begin function

mark all occurrences of T in ¢

while there is a conjunct Py A Py A--- P, — P' of ¢

such that all P; are marked but P’ is not do
mark P’
end while

If L is marked

then return ‘unsatisfiable’

else return ‘satisfiable’
end function



A slide from lecture 7:

Exercise 1.5: 15.
Apply algorithm HORN to each of these Horn formulas:

(a)

(pAgAw — )N — DA = p)A(T = AT — )N (u — s)A(T — u)



Theorem 1.47. The algorithm HORN is correct for the satisfia-
bility decision problem of Horn formulas and has no more than
n + 1 cycles in its while-statement if n is the number of atoms

in ¢.

In particular HORN always terminates on correct input.

Proof
e termination



Theorem 1.47. The algorithm HORN is correct for the satisfia-
bility decision problem of Horn formulas and has no more than
n + 1 cycles in its while-statement if n is the number of atoms
in ¢.

In particular HORN always terminates on correct input.

Proof
e termination
® Correct answer

All marked P are true for all valuations in which ¢ eval-
uates to T.

holds after any number of executions of the body of the while
statement.



A slide from lecture 7:

From CNF to Horn formula

(rV—=g)A(—qV -rV-p)



All marked P are true for all valuations in which ¢ eval-
uates to T.

1.6. SAT solvers

All marked subformulas evaluate to their mark value for
all valuations in which ¢ evaluates to T.



A linear solver

Translate formulas into equivalent formulas without vV and —.

T(p) = p
T(—¢) = —T(¢)
T(p1 ANd2) = T(¢1) NT(92)
T(p1V d2) =
T (1 — ¢2)



A linear solver

Translate formulas into equivalent formulas without vV and —.

T(p) = p
T(—~¢) = —T(¢)
T(p1 Np2) = T(¢p1) NT(¢p2)

T(p1V P2) = (=T (¢1) AT (92)
T(p1 — ¢2) —(T'(¢1) AN =T (¢2))

10



Example 1.48.

T(p). ..

parse tree. ..
DAG. ..

marking. . .

¢» =pA—-(qV —p)

11



Rules for flow of constraints. ..

Post-processing of marking. . .

12



Example.

Sequent
is valid, iff
is valid, iff

IS not satisfiable.

(). . .
DAG. ..

marking. . .

pANq—>rkFEp—>qg—r

F(pANg—T) > p—qg—T

¢ =-((pANgqg—r)=>p—>qg—1)

13



Complexity. . .

But. ..

14



1.6.2. A cubic solver

Example.

Is
(pVaegVvr)AN®V-g)A(@V-r)AN(V-p)A(—pV-qV-r)

satisfiable?

15



¢ = (pV(gvr) AV A((gV-r)AN((rV=p)A(=pV(=gV—r)))))

(). . .

marking. . .
test an unmarked node n with T...

16



For some unmarked node n:
Test n with T
Test n with F

e If both runs find contradictory constraints, then. ..

e Else
— nodes with same mark in both runs: ...

— test next unmarked node

Until. . .

17



Complexity. . .

18



Optimizations:

e If one run for tested node finds contradictory constraints, . ..

e If either run finds consistent, complete marking, ...

19



