Logica (I\&E)

$$
\text { najaar } 2017
$$

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl
college 13, maandag 4 december 2017
2. Predicate logic
2.4. Semantics of predicate logic

Semantic tableaux for predicate logic
Soms moet er iets gebeuren voordat er iets gebeurt.

A slide from lecture 12:

Definition 2.14.

Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed arity.
A model of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

1. A non-empty set A, the universe of concrete values;
2. for each nullary symbol $f \in \mathcal{F}$, a concrete element $f^{\mathcal{M}}$ of A;
3. for each $f \in \mathcal{F}$ with arity $n>0$, a concrete function $f^{\mathcal{M}}$: $A^{n} \rightarrow A$ from A^{n}, the set of n-tuples over A , to A ;
4. for each $P \in \mathcal{P}$ with arity $n>0$, a subset $P^{\mathcal{M}} \subseteq A^{n}$ of n-tuples over A;
5. $=\mathcal{M}$ is equality on A

For all students x : ϕ

There exists a student x : ϕ

Use predicate Student (x)...

A slide from lecture 12:

Definition 2.17.

A look-up table or environment for a universe A of concrete values is a function $l:$ var $\rightarrow A$ from the set of variables var to A.

For such an l, we denote by $l[x \mapsto a]$ the look-up table which maps x to a and any other variable y to $l(y)$.

A slide from lecture 12:

Definition 2.18.

Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table l, we define the satisfaction relation $\mathcal{M} \vDash_{l} \phi$ for each logical formula ϕ over the pair (\mathcal{F}, \mathcal{P}) and look-up table l by structural induction on ϕ.

If $\mathcal{M} \vDash_{l} \phi$ holds, we say that ϕ computes to T in the model \mathcal{M} with respect to the look-up table l.

A slide from lecture 12:

Definition 2.18. (continued)
P: If ϕ is of the form $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$, then we interpret the terms $t_{1}, t_{2}, \ldots, t_{n}$ in our set A by replacing all variables with their values according to l. In this way we compute concrete values $a_{1}, a_{2}, \ldots, a_{n}$ from A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$.
Now $\mathcal{M} \vDash_{l} P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ holds, iff $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in the set $p^{\mathcal{M}}$.

A slide from lecture 12:

Definition 2.18. (continued)
$\forall x$: \quad The relation $\mathcal{M} \vDash_{l} \forall x \psi$ holds, iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for all $a \in A$.
$\exists x$: \quad The relation $\mathcal{M} \vDash_{l} \exists x \psi$ holds, iff $\mathcal{M} \vDash_{l[x \mapsto a]} \psi$ holds for some $a \in A$.

A slide from lecture 12:

Definition 2.18. (continued)
\neg : The relation $\mathcal{M} \vDash_{l} \neg \psi$ holds, iff $\mathcal{M} \vDash_{l} \psi$ does not hold.
\vee : The relation $\mathcal{M} \vDash_{l} \psi_{1} \vee \psi_{2}$ holds, iff $\mathcal{M} \vDash_{l} \psi_{1}$ or $\mathcal{M} \vDash_{l} \psi_{2}$ holds.
\wedge : The relation $\mathcal{M} \vDash_{l} \psi_{1} \wedge \psi_{2}$ holds, iff $\mathcal{M} \vDash_{l} \psi_{1}$ and $\mathcal{M} \vDash_{l} \psi_{2}$ holds.
\rightarrow : The relation $\mathcal{M} \vDash_{l} \psi_{1} \rightarrow \psi_{2}$ holds, iff $\mathcal{M} \vDash_{l} \psi_{2}$ holds whenever $\mathcal{M} \vDash_{l} \psi_{1}$ holds.

2.4.2. Semantic entailment

Definition 2.20.

Let Γ be a (possibly infinite) set of formulas in predicate logic and ψ a formula of predicate logic.

1. Semantic entailment $\Gamma \vDash \psi$, iff for all models \mathcal{M} and look-up tables l, whenever $\mathcal{M} \vDash_{l} \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \vDash_{l} \psi$ holds as well.
2. Formula ψ is satisfiable, iff there is some model \mathcal{M} and some look-up table l such that $\mathcal{M} F_{l} \psi$ holds.
3. Formula ψ is valid, iff $\mathcal{M} \vDash_{l} \psi$ holds for all models \mathcal{M} and look-up tables l in which we can check ψ, i.e., iff $\vDash \psi$.
4. The set Γ is consistent or satisfiable, iff there is some model \mathcal{M} and and some look-up table l such that $\mathcal{M} \vDash_{l} \phi$ holds for all $\phi \in \Gamma$.

$$
\mathcal{M} \vDash \phi \quad \text { vs. } \quad \phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi
$$

Computational ...

In propositional logic...

Example 2.21.

Is

$$
\forall x(P(x) \rightarrow Q(x)) \vDash \forall x P(x) \rightarrow \forall x Q(x)
$$

valid?

Is

$$
\forall x P(x) \rightarrow \forall x Q(x) \vDash \forall x(P(x) \rightarrow Q(x))
$$

valid?

2.4.3. The semantics of equality

Mild requirements on model...
$\phi_{1}, \phi_{2}, \ldots, \phi_{n} \vDash \psi$

Special predicate $=: \quad t_{1}=t_{2}$
Semantically, $=\mathcal{M}=\ldots$

9. Predikaatlogica: semantische tableaus

[Van Benthem et al]

To find counter example of a gevolgtrekking

$$
\phi_{1}, \ldots, \phi_{n} / \psi
$$

in predicate logic

$$
\text { Predicate } P(x)=P x \quad R(x, y)=R x y
$$

$$
\text { Substitution: } \phi[t / x]=[t / x] \phi
$$

Definition 2.14.

Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed arity.
A model of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

1. A non-empty set A, the universe of concrete values;
2. for each nullary symbol $f \in \mathcal{F}$, a concrete element $f \mathcal{M}$ of A;
3. for each $f \in \mathcal{F}$ with arity $n>0$, a concrete function $f^{\mathcal{M}}$: $A^{n} \rightarrow A$ from A^{n}, the set of n-tuples over A, to A;
4. for each $P \in \mathcal{P}$ with arity $n>0$, a subset $P^{\mathcal{M}} \subseteq A^{n}$ of n-tuples over A;
5. $=\mathcal{M}$ is equality on A
6. = domein $D \quad 2-4=$ interpretatiefunctie I
look-up table $l=$ bedeling b

Extending semantic tableaux from propositional logic

- reduction rules for \forall and \exists
- building up domain D
- building up interpretatiefunctie I (and bedeling b)

We ignore function symbols (including constants) and free variables.

Voorbeeld 9.1.

$$
\forall x(A(x) \rightarrow B(x)), \forall x(B(x) \rightarrow C(x)) / \forall x(A(x) \rightarrow C(x))
$$

Valid or not?

Extra reduction rules

Suppose we already have $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$

	$\begin{gathered} \Phi, \forall x \phi \circ \psi \\ \Phi, \phi[d / x] \circ \psi \end{gathered}$	\forall_{R}	$\Phi \circ \forall x \phi, \Psi$ $\Phi \circ \phi\left[d_{k+1} / x\right],$

where d is any existing d_{i}, and d_{k+1} is new

Voorbeeld 9.2.

$$
\forall x(A(x) \rightarrow \forall y B(y)) / \forall x \forall y(A(x) \rightarrow B(y))
$$

Valid or not?

Voorbeeld 9.3.

Alle kaaimannen zijn reptielen. Geen reptiel kan fluiten. Dus geen kaaiman kan fluiten.

$$
\forall x(K(x) \rightarrow R(x)), \neg \exists x(R(x) \wedge F(x)) / \neg \exists x(K(x) \wedge F(x))
$$

Valid or not?

Extra reduction rules

Suppose we already have $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$

$\left.\begin{array}{r}\forall_{\mathrm{L}}: \quad \Phi, \forall x \phi \circ \psi \\ \Phi, \phi[d / x]\end{array}\right\|^{\circ} \psi$		$\Phi \circ \forall x \phi, \Psi$ $\Phi \circ \phi\left[d_{k+1} / x\right], \psi$
	$\exists \mathrm{R}$:	$\begin{aligned} & \Phi \circ \exists x \phi, \Psi \\ & \Phi \circ \phi[d / x], \Psi \end{aligned}$

where d is any existing d_{i}, and d_{k+1} is new

Voorbeeld 9.4.

Geen A is B. Geen B is C.
Dus geen A is C.

Geen professor is student. Geen student is gepromoveerd.
Dus geen professor is gepromoveerd.

$$
\neg \exists x(A(x) \wedge B(x)), \neg \exists x(B(x) \wedge C(x)) / \neg \exists x(A(x) \wedge C(x))
$$

Valid or not?

Voorbeeld 9.5.

$$
\exists x \forall y R(x, y) / \forall y \exists x R(x, y)
$$

Valid or not?

Voorbeeld 9.6.

$$
\forall y \exists x R(x, y) / \exists x \forall y R(x, y)
$$

Valid or not?

Voorbeeld 9.6.

$$
\forall y \exists x R(x, y) / \exists x \forall y R(x, y)
$$

Valid or not?

Infinite branch, which yields counter example with infinite domain.
E.g. $D \stackrel{\text { def }}{=} \mathbb{N}, \quad R^{\mathcal{M}} \stackrel{\text { def }}{=}>^{\prime}$

9.3. Een verfijning van de methode

Study this section yourself

9.4. Samenvatting en opmerkingen

Possible situations:

1. Tableau closes (and is finite), hence gevolgtrekking is valid
2. There is a non-closing branch
2.1 finite
2.2 infinite
describing counter example

Undecidability

How to decide that we are on an infinite branch?

Adequacy

A gevolgtrekking is valid, if and only if there is a closed tableau.

