Logica (I&E)

najaar 2017

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876 rvvliet(at)liacs(dot)nl

college 12, maandag 27 november 2017

Predicate logic
 Semantics of predicate logic

We zijn op zoek gegaan naar de overwinning en dan kom je hem vanzelf tegen. A slide from lecture 10:

Definition 2.8.

Given a term t, a variable x and a formula ϕ , we say that t is free for x in ϕ , if no free x leaf in ϕ occurs in the scope of $\forall y$ or $\exists y$ for any variable y occurring in t.

If no free occurrences of x in ϕ ...

If t is not free for x in ϕ ...

2.4. Semantics of predicate logic

In propositional logic:

A slide from lecture 6:

Corollary 1.39. (Soundness and Completeness) Let $\phi_1, \phi_2, \ldots, \phi_n$ and ψ be formulas of propositional logic. Then

$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$$

holds, iff the sequent

$$\phi_1, \phi_2, \ldots, \phi_n \vdash \psi$$

is valid.

Truth values for

$$(p \vee \neg q) \to (q \to p)$$

Truth values for

$$\forall x \exists y ((P(x) \lor \neg Q(y)) \to (Q(x) \to P(y)))$$

?

Or for

$$P(t_1, t_2, \ldots, t_n)$$

?

Definition 2.14.

Let \mathcal{F} be a set of function symbols and \mathcal{P} a set of predicate symbols, each symbol with a fixed arity. A model of the pair $(\mathcal{F}, \mathcal{P})$ consists of the following set of data:

1. A non-empty set A, the universe of concrete values;

- 2. for each nullary symbol $f \in \mathcal{F}$, a concrete element $f^{\mathcal{M}}$ of A;
- 3. for each $f \in \mathcal{F}$ with arity n > 0, a concrete function $f^{\mathcal{M}}$: $A^n \to A$ from A^n , the set of *n*-tuples over A, to A;
- 4. for each $P \in \mathcal{P}$ with arity n > 0, a subset $P^{\mathcal{M}} \subseteq A^n$ of *n*-tuples over A;
- 5. $=^{\mathcal{M}}$ is equality on A

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$ (states in computer program)
 $i^{\mathcal{M}} \stackrel{\text{def}}{=} a, R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\} F^{\mathcal{M}} \stackrel{\text{def}}{=} \{b, c\}$

1. Informal model check of formula

 $\exists y R(i, y)$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$ (states in computer program)
 $i^{\mathcal{M}} \stackrel{\text{def}}{=} a, R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\} F^{\mathcal{M}} \stackrel{\text{def}}{=} \{b, c\}$

2. Informal model check of formula

 $\neg F(i)$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$ (states in computer program)
 $i^{\mathcal{M}} \stackrel{\text{def}}{=} a, R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\} F^{\mathcal{M}} \stackrel{\text{def}}{=} \{b, c\}$

$$\forall x \forall y \forall z (R(x,y) \land R(x,z) \to y = z)$$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$ (states in computer program)
 $i^{\mathcal{M}} \stackrel{\text{def}}{=} a, R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b), (a, c), (b, c), (c, c)\} F^{\mathcal{M}} \stackrel{\text{def}}{=} \{b, c\}$

4. Informal model check of formula

 $\forall x \exists y R(x,y)$

```
Example 2.16.

\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\} \text{ (nullary, binary)}

\mathcal{P} \stackrel{\text{def}}{=} \{\leq\} \text{ (binary)}

Infix: t_1 \cdot t_2 \leq (t \cdot t)
```

```
Model \mathcal{M}:

A \stackrel{\text{def}}{=} \{ (\text{finite}) \text{ binary strings (including empty string } \epsilon) \}

e^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon

\mathcal{M} \stackrel{\text{def}}{=} \epsilon

concatenation'

\leq \stackrel{\text{def}}{=} \text{'is prefix'}
```

$$\forall x ((x \le x \cdot e) \land (x \cdot e \le x))$$

Example 2.16. $\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\} \text{ (nullary, binary)}$ $\mathcal{P} \stackrel{\text{def}}{=} \{\leq\} \text{ (binary)}$ Infix: $t_1 \cdot t_2 \leq (t \cdot t)$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{ (\text{finite}) \text{ binary strings (including empty string } \epsilon) \}$
 $e^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon$
 $\mathcal{M} \stackrel{\text{def}}{=} \epsilon$
 $concatenation'$
 $\leq \stackrel{\text{def}}{=} \epsilon$ 'is prefix'

$$\exists y \forall x (y \le x)$$

Example 2.16. $\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\} \text{ (nullary, binary)}$ $\mathcal{P} \stackrel{\text{def}}{=} \{\leq\} \text{ (binary)}$ Infix: $t_1 \cdot t_2 \leq (t \cdot t)$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{ (\text{finite}) \text{ binary strings (including empty string } \epsilon) \}$
 $e^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon$
 $\cdot^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon$
 $concatenation'$
 $\leq \stackrel{\text{def}}{=} \epsilon$ 'is prefix'

$$\forall x \exists y (y \le x)$$

```
Example 2.16.

\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\} \text{ (nullary, binary)}

\mathcal{P} \stackrel{\text{def}}{=} \{\leq\} \text{ (binary)}

Infix: t_1 \cdot t_2 \leq (t \cdot t)
```

```
Model \mathcal{M}:

A \stackrel{\text{def}}{=} \{ (\text{finite}) \text{ binary strings (including empty string } \epsilon) \}

e^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon

\mathcal{M} \stackrel{\text{def}}{=} \epsilon

concatenation'

\leq \stackrel{\text{def}}{=} \text{'is prefix'}
```

$$\forall x \forall y \forall z ((x \leq y) \rightarrow (x \cdot z \leq y \cdot z))$$

Example 2.16. $\mathcal{F} \stackrel{\text{def}}{=} \{e, \cdot\} \text{ (nullary, binary)}$ $\mathcal{P} \stackrel{\text{def}}{=} \{\leq\} \text{ (binary)}$ Infix: $t_1 \cdot t_2 \leq (t \cdot t)$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{ (\text{finite}) \text{ binary strings (including empty string } \epsilon) \}$
 $e^{\mathcal{M}} \stackrel{\text{def}}{=} \epsilon$
 $\cdot^{\mathcal{M}} \stackrel{\text{def}}{=}$ 'concatenation'
 $\leq \stackrel{\text{def}}{=}$ 'is prefix'

$$\neg \exists x \forall y ((x \le y) \to (y \le x))$$

Example. $\mathcal{F} \stackrel{\text{def}}{=} \emptyset$ $\mathcal{P} \stackrel{\text{def}}{=} \{P, Q, R\}$ (unary, unary, binary)

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b\}$
 $P^{\mathcal{M}} \stackrel{\text{def}}{=} \{a, b\}$ $Q^{\mathcal{M}} \stackrel{\text{def}}{=} \{a\}$ $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b)\}$

Informal check of formula

 $\forall x \forall y (P(x) \land \exists x (Q(x) \land R(x, y)))$

Mild requirements on model...

Choice of model...

 $\phi[t/x]$ vs. $\phi[a/x]$

Definition 2.17.

A look-up table or environment for a universe A of concrete values is a function $l : \mathbf{var} \to A$ from the set of variables **var** to A.

For such an l, we denote by $l[x \mapsto a]$ the look-up table which maps x to a and any other variable y to l(y).

Example.

						updated	
	100	ok-up tak	l = l		lo	ok-up table	
	x	b				$l[x \mapsto a]$	
	y	b			x	a	
	z	a			y	b	
					z	a	
updated				updated			
look-up table				look-up table			
$l[x \mapsto b]$				l[a	$l[x \mapsto b][x \mapsto a][z \mapsto b]$		
$x \mid$		b		x		a	
y		b		y		b	
z		a		z		b	
			1	1			

Example.

 $\mathcal{F} \stackrel{\text{def}}{=} \emptyset$ $\mathcal{P} \stackrel{\text{def}}{=} \{P, Q, R\} \text{ (unary, unary, binary)}$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b\}$ $Q^{\mathcal{M}} \stackrel{\text{def}}{=} \{a\}$ $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b)\}$

What happens to formula

$$\forall x \forall y (P(x) \land \exists x (Q(x) \land R(x, y)))$$

with

look-up table l					
x	b				
y	b				

That is: l(x) = b, l(y) = b

Definition 2.18.

Given a model \mathcal{M} for a pair $(\mathcal{F}, \mathcal{P})$ and given a look-up table l, we define the satisfaction relation $\mathcal{M} \models_l \phi$ for each logical formula ϕ over the pair $(\mathcal{F}, \mathcal{P})$ and look-up table l by structural induction on ϕ .

If $\mathcal{M} \vDash_l \phi$ holds, we say that ϕ computes to T in the model \mathcal{M} with respect to the look-up table l.

P: If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, t_2, \ldots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \ldots, a_n from A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \models_l P(t_1, t_2, \ldots, t_n)$ holds, iff (a_1, a_2, \ldots, a_n) is in the set $P^{\mathcal{M}}$.

Exercise. Let $A \stackrel{\text{def}}{=} \{a, b, c\}$ $R^{\mathcal{M}} = \{(b, a), (b, b), (b, c)\}$ $l(x) = b, \ l(y) = c$

(a) Is $\mathcal{M} \vDash_l R(x, y)$? (b) Is $\mathcal{M} \vDash_l R(y, x)$?

P: If ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, then we interpret the terms t_1, t_2, \ldots, t_n in our set A by replacing all variables with their values according to l. In this way we compute concrete values a_1, a_2, \ldots, a_n from A for each of these terms, where we interpret any function symbol $f \in \mathcal{F}$ by $f^{\mathcal{M}}$. Now $\mathcal{M} \models_l P(t_1, t_2, \ldots, t_n)$ holds, iff (a_1, a_2, \ldots, a_n) is in the set $P^{\mathcal{M}}$.

Exercise. Let

$$A \stackrel{\text{def}}{=} \{a, b, c\}$$

$$f^{\mathcal{M}}(a) = f^{\mathcal{M}}(b) = c, \ f^{\mathcal{M}}(c) = b$$

$$R^{\mathcal{M}} = \{(b, a), (b, b), (b, c)\}$$

$$l(x) = a, \ l(y) = c$$

(a) Is $\mathcal{M} \vDash_l R(f(x), y)$? (b) Is $\mathcal{M} \vDash_l R(f(y), x)$?

 $\forall x: \quad \text{The relation } \mathcal{M} \vDash_l \forall x \psi \text{ holds, iff } \mathcal{M} \vDash_{l[x \mapsto a]} \psi \text{ holds for all } a \in A.$

Exercise. Let

$$A \stackrel{\text{def}}{=} \{a, b, c\}$$

$$R^{\mathcal{M}} = \{(b, a), (b, b), (b, c)\}$$

$$l(x) = b, \ l(y) = c$$

(a) Is $\mathcal{M} \vDash_{l} \forall x R(x, y)$? (b) Is $\mathcal{M} \vDash_{l} \forall y R(x, y)$?

 $\exists x: \quad \text{The relation } \mathcal{M} \vDash_{l} \exists x \psi \text{ holds, iff } \mathcal{M} \vDash_{l[x \mapsto a]} \psi \text{ holds for some } a \in A.$

Exercise. Let

$$A \stackrel{\text{def}}{=} \{a, b, c\}$$

$$R^{\mathcal{M}} = \{(b, a), (b, b), (b, c)\}$$

$$l(x) = a, \ l(y) = c$$

(a) Is $\mathcal{M} \vDash_{l} \exists x R(x, y)$? (b) Is $\mathcal{M} \vDash_{l} \exists x R(y, x)$?

 \neg : The relation $\mathcal{M} \vDash_l \neg \psi$ holds, iff $\mathcal{M} \vDash_l \psi$ does not hold.

 $\forall : \quad \text{The relation } \mathcal{M} \vDash_l \psi_1 \lor \psi_2 \text{ holds, iff } \mathcal{M} \vDash_l \psi_1 \text{ or } \mathcal{M} \vDash_l \psi_2 \text{ holds.}$

 $\land: \quad \text{The relation } \mathcal{M} \vDash_l \psi_1 \land \psi_2 \text{ holds, iff } \mathcal{M} \vDash_l \psi_1 \text{ and } \mathcal{M} \vDash_l \psi_2 \text{ holds.}$

 $\rightarrow: \quad \text{The relation } \mathcal{M} \vDash_l \psi_1 \rightarrow \psi_2 \text{ holds, iff } \mathcal{M} \vDash_l \psi_2 \text{ holds} \\ \text{whenever } \mathcal{M} \vDash_l \psi_1 \text{ holds.}$

Example.

 $\mathcal{F} \stackrel{\text{def}}{=} \emptyset$ $\mathcal{P} \stackrel{\text{def}}{=} \{P, Q, R\} \text{ (unary, unary, binary)}$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b\}$ $Q^{\mathcal{M}} \stackrel{\text{def}}{=} \{a\}$ $R^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (a, b)\}$

Is

$$M \vDash_{l} \forall x \forall y (P(x) \land \exists x (Q(x) \land R(x, y)))$$

with

look-up table l					
x	b				
y	b				

That is: l(x) = b, l(y) = b

If l and l' are identical on all free variables in ϕ , then . . .

If ϕ has *no* free variables, then . . . Notation $\mathcal{M} \vDash \phi$ Sentence ϕ **Example 2.19.** $\mathcal{F} \stackrel{\text{def}}{=} \{\text{alma}\} \text{ (constant)}$ $\mathcal{P} \stackrel{\text{def}}{=} \{\text{loves}\} \text{ (binary)}$

Model
$$\mathcal{M}$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$
 $alma^{\mathcal{M}} \stackrel{\text{def}}{=} a$
 $loves^{\mathcal{M}} \stackrel{\text{def}}{=} \{(a, a), (b, a), (c, a)\}$

None of Alma's lovers' lovers love her.

In predicate logic: $\phi = \dots$

Is $M \vDash \phi$?

Example 2.19. $\mathcal{F} \stackrel{\text{def}}{=} \{\text{alma}\} \text{ (constant)}$ $\mathcal{P} \stackrel{\text{def}}{=} \{\text{loves}\} \text{ (binary)}$

Model
$$\mathcal{M}'$$
:
 $A \stackrel{\text{def}}{=} \{a, b, c\}$
 $alma^{\mathcal{M}'} \stackrel{\text{def}}{=} a$
 $loves^{\mathcal{M}'} \stackrel{\text{def}}{=} \{(b, a), (c, b)\}$

None of Alma's lovers' lovers love her.

In predicate logic: $\phi = \dots$

Is $M' \vDash \phi$?