
Logica (I&E)

najaar 2017

http://liacs.leidenuniv.nl/~vlietrvan1/logica/

Rudy van Vliet

kamer 140 Snellius, tel. 071-527 2876

rvvliet(at)liacs(dot)nl

college 12, maandag 27 november 2017

2. Predicate logic

2.4. Semantics of predicate logic

We zijn op zoek gegaan naar de overwinning en dan kom je

hem vanzelf tegen.

1

http://liacs.leidenuniv.nl/~vlietrvan1/logica/


A slide from lecture 10:

Definition 2.8.

Given a term t, a variable x and a formula φ,

we say that t is free for x in φ,

if no free x leaf in φ occurs in the scope of ∀y or ∃y for any

variable y occurring in t.

If no free occurrences of x in φ. . .

If t is not free for x in φ. . .

2



2.4. Semantics of predicate logic

In propositional logic:

A slide from lecture 6:

Corollary 1.39. (Soundness and Completeness)

Let φ1, φ2, . . . , φn and ψ be formulas of propositional logic.

Then

φ1, φ2, . . . , φn � ψ

holds, iff the sequent

φ1, φ2, . . . , φn ⊢ ψ

is valid.

3



Truth values for

(p ∨ ¬q) → (q → p)

Truth values for

∀x∃y((P (x) ∨ ¬Q(y)) → (Q(x) → P (y)))

?

Or for

P (t1, t2, . . . , tn)

?

4



Definition 2.14.
Let F be a set of function symbols and P a set of predicate
symbols, each symbol with a fixed arity.

A model of the pair (F ,P) consists of the following set of data:

1. A non-empty set A, the universe of concrete values;

2. for each nullary symbol f ∈ F, a concrete element fM of A;

3. for each f ∈ F with arity n > 0, a concrete function fM :
An → A from An, the set of n-tuples over A, to A;

4. for each P ∈ P with arity n > 0, a subset PM ⊆ An of n-tuples
over A;

5. =M is equality on A

5



Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

1. Informal model check of formula

∃yR(i, y)

6



Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

2. Informal model check of formula

¬F (i)

7



Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

3. Informal model check of formula

∀x∀y∀z(R(x, y) ∧R(x, z) → y = z)

8



Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

4. Informal model check of formula

∀x∃yR(x, y)

9



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

1. Informal model check of formula

∀x((x ≤ x · e) ∧ (x · e ≤ x))

10



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

2. Informal model check of formula

∃y∀x(y ≤ x)

11



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

3. Informal model check of formula

∀x∃y(y ≤ x)

12



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

4. Informal model check of formula

∀x∀y∀z((x ≤ y) → (x · z ≤ y · z))

13



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

5. Informal model check of formula

¬∃x∀y((x ≤ y) → (y ≤ x))

14



Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

Informal check of formula

∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))

15



Mild requirements on model. . .

Choice of model. . .

φ[t/x] vs. φ[a/x]

16



Definition 2.17.

A look-up table or environment for a universe A of concrete

values is a function l : var → A from the set of variables var to

A.

For such an l, we denote by l[x 7→ a] the look-up table which

maps x to a and any other variable y to l(y).

17



Example.

look-up table l
x b
y b
z a

updated
look-up table

l[x 7→ a]
x a
y b
z a

updated
look-up table

l[x 7→ b]
x b
y b
z a

updated
look-up table

l[x 7→ b][x 7→ a][z 7→ b]
x a
y b
z b

18



Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

What happens to formula

∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))

with

look-up table l
x b
y b

That is: l(x) = b, l(y) = b

19



Definition 2.18.

Given a model M for a pair (F ,P) and given a look-up table l,

we define the satisfaction relation M �l φ for each logical formula

φ over the pair (F ,P) and look-up table l by structural induction

on φ.

If M �l φ holds, we say that φ computes to T in the model M

with respect to the look-up table l.

20



Definition 2.18. (continued)

P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the

terms t1, t2, . . . , tn in our set A by replacing all variables with their

values according to l. In this way we compute concrete values

a1, a2, . . . , an from A for each of these terms, where we interpret

any function symbol f ∈ F by fM.

Now M �l P (t1, t2, . . . , tn) holds, iff (a1, a2, . . . , an) is in the set

PM.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = b, l(y) = c

(a) Is M �l R(x, y) ?

(b) Is M �l R(y, x) ?

21



Definition 2.18. (continued)

P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the

terms t1, t2, . . . , tn in our set A by replacing all variables with their

values according to l. In this way we compute concrete values

a1, a2, . . . , an from A for each of these terms, where we interpret

any function symbol f ∈ F by fM.

Now M �l P (t1, t2, . . . , tn) holds, iff (a1, a2, . . . , an) is in the set

PM.

Exercise. Let

A
def
= {a, b, c}

fM(a) = fM(b) = c, fM(c) = b
RM = {(b, a), (b, b), (b, c)}
l(x) = a, l(y) = c

(a) Is M �l R(f(x), y) ?

(b) Is M �l R(f(y), x) ?

22



Definition 2.18. (continued)

∀x: The relation M �l ∀xψ holds, iff M �l[x7→a] ψ holds for all

a ∈ A.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = b, l(y) = c

(a) Is M �l ∀xR(x, y) ?

(b) Is M �l ∀yR(x, y) ?

23



Definition 2.18. (continued)

∃x: The relation M �l ∃xψ holds, iff M �l[x7→a] ψ holds for

some a ∈ A.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = a, l(y) = c

(a) Is M �l ∃xR(x, y) ?

(b) Is M �l ∃xR(y, x) ?

24



Definition 2.18. (continued)

¬: The relation M �l ¬ψ holds, iff M �l ψ does not hold.

∨: The relation M �l ψ1 ∨ ψ2 holds, iff M �l ψ1 or M �l ψ2
holds.

∧: The relation M �l ψ1 ∧ ψ2 holds, iff M �l ψ1 and M �l ψ2
holds.

→: The relation M �l ψ1 → ψ2 holds, iff M �l ψ2 holds

whenever M �l ψ1 holds.

25



Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

Is

M �l ∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))

with

look-up table l
x b
y b

That is: l(x) = b, l(y) = b

26



If l and l′ are identical on all free variables in φ, then . . .

If φ has no free variables, then . . .

Notation M � φ

Sentence φ

27



Example 2.19.

F
def
= {alma} (constant)

P
def
= {loves} (binary)

Model M:

A
def
= {a, b, c}

almaM def
= a

lovesM
def
= {(a, a), (b, a), (c, a)}

None of Alma’s lovers’ lovers love her.

In predicate logic: φ = . . .

Is M � φ ?

28



Example 2.19.

F
def
= {alma} (constant)

P
def
= {loves} (binary)

Model M′:

A
def
= {a, b, c}

almaM′ def
= a

lovesM
′ def
= {(b, a), (c, b)}

None of Alma’s lovers’ lovers love her.

In predicate logic: φ = . . .

Is M ′
� φ ?

29


