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2. Predicate logic

2.4. Semantics of predicate logic

We zijn op zoek gegaan naar de overwinning en dan kom je

hem vanzelf tegen.
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A slide from lecture 10:

Definition 2.8.

Given a term t, a variable x and a formula φ,

we say that t is free for x in φ,

if no free x leaf in φ occurs in the scope of ∀y or ∃y for any

variable y occurring in t.

If no free occurrences of x in φ. . .

If t is not free for x in φ. . .
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2.4. Semantics of predicate logic

In propositional logic:

A slide from lecture 6:

Corollary 1.39. (Soundness and Completeness)

Let φ1, φ2, . . . , φn and ψ be formulas of propositional logic.

Then

φ1, φ2, . . . , φn � ψ

holds, iff the sequent

φ1, φ2, . . . , φn ⊢ ψ

is valid.
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Truth values for

(p ∨ ¬q) → (q → p)

Truth values for

∀x∃y((P (x) ∨ ¬Q(y)) → (Q(x) → P (y)))

?

Or for

P (t1, t2, . . . , tn)

?
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Definition 2.14.
Let F be a set of function symbols and P a set of predicate
symbols, each symbol with a fixed arity.

A model of the pair (F ,P) consists of the following set of data:

1. A non-empty set A, the universe of concrete values;

2. for each nullary symbol f ∈ F, a concrete element fM of A;

3. for each f ∈ F with arity n > 0, a concrete function fM :
An → A from An, the set of n-tuples over A, to A;

4. for each P ∈ P with arity n > 0, a subset PM ⊆ An of n-tuples
over A;

5. =M is equality on A
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Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

1. Informal model check of formula

∃yR(i, y)
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Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

2. Informal model check of formula

¬F (i)
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Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

3. Informal model check of formula

∀x∀y∀z(R(x, y) ∧R(x, z) → y = z)
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Example 2.15.

F
def
= {i} (nullary)

P
def
= {R,F} (binary, unary)

Model M:

A
def
= {a, b, c} (states in computer program)

iM
def
= a, RM def

= {(a, a), (a, b), (a, c), (b, c), (c, c)} FM def
= {b, c}

4. Informal model check of formula

∀x∃yR(x, y)
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Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

1. Informal model check of formula

∀x((x ≤ x · e) ∧ (x · e ≤ x))
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Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

2. Informal model check of formula

∃y∀x(y ≤ x)
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Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

3. Informal model check of formula

∀x∃y(y ≤ x)
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Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

4. Informal model check of formula

∀x∀y∀z((x ≤ y) → (x · z ≤ y · z))

13



Example 2.16.

F
def
= {e, ·} (nullary, binary)

P
def
= {≤} (binary)

Infix: t1 · t2 ≤ (t · t)

Model M:

A
def
= {(finite) binary strings (including empty string ǫ)}

eM
def
= ǫ

·M
def
= ‘concatenation’

≤
def
= ‘is prefix’

5. Informal model check of formula

¬∃x∀y((x ≤ y) → (y ≤ x))
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Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

Informal check of formula

∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))
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Mild requirements on model. . .

Choice of model. . .

φ[t/x] vs. φ[a/x]
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Definition 2.17.

A look-up table or environment for a universe A of concrete

values is a function l : var → A from the set of variables var to

A.

For such an l, we denote by l[x 7→ a] the look-up table which

maps x to a and any other variable y to l(y).
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Example.

look-up table l
x b
y b
z a

updated
look-up table

l[x 7→ a]
x a
y b
z a

updated
look-up table

l[x 7→ b]
x b
y b
z a

updated
look-up table

l[x 7→ b][x 7→ a][z 7→ b]
x a
y b
z b
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Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

What happens to formula

∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))

with

look-up table l
x b
y b

That is: l(x) = b, l(y) = b
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Definition 2.18.

Given a model M for a pair (F ,P) and given a look-up table l,

we define the satisfaction relation M �l φ for each logical formula

φ over the pair (F ,P) and look-up table l by structural induction

on φ.

If M �l φ holds, we say that φ computes to T in the model M

with respect to the look-up table l.
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Definition 2.18. (continued)

P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the

terms t1, t2, . . . , tn in our set A by replacing all variables with their

values according to l. In this way we compute concrete values

a1, a2, . . . , an from A for each of these terms, where we interpret

any function symbol f ∈ F by fM.

Now M �l P (t1, t2, . . . , tn) holds, iff (a1, a2, . . . , an) is in the set

PM.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = b, l(y) = c

(a) Is M �l R(x, y) ?

(b) Is M �l R(y, x) ?
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Definition 2.18. (continued)

P : If φ is of the form P (t1, t2, . . . , tn), then we interpret the

terms t1, t2, . . . , tn in our set A by replacing all variables with their

values according to l. In this way we compute concrete values

a1, a2, . . . , an from A for each of these terms, where we interpret

any function symbol f ∈ F by fM.

Now M �l P (t1, t2, . . . , tn) holds, iff (a1, a2, . . . , an) is in the set

PM.

Exercise. Let

A
def
= {a, b, c}

fM(a) = fM(b) = c, fM(c) = b
RM = {(b, a), (b, b), (b, c)}
l(x) = a, l(y) = c

(a) Is M �l R(f(x), y) ?

(b) Is M �l R(f(y), x) ?
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Definition 2.18. (continued)

∀x: The relation M �l ∀xψ holds, iff M �l[x7→a] ψ holds for all

a ∈ A.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = b, l(y) = c

(a) Is M �l ∀xR(x, y) ?

(b) Is M �l ∀yR(x, y) ?
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Definition 2.18. (continued)

∃x: The relation M �l ∃xψ holds, iff M �l[x7→a] ψ holds for

some a ∈ A.

Exercise. Let

A
def
= {a, b, c}

RM = {(b, a), (b, b), (b, c)}

l(x) = a, l(y) = c

(a) Is M �l ∃xR(x, y) ?

(b) Is M �l ∃xR(y, x) ?
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Definition 2.18. (continued)

¬: The relation M �l ¬ψ holds, iff M �l ψ does not hold.

∨: The relation M �l ψ1 ∨ ψ2 holds, iff M �l ψ1 or M �l ψ2
holds.

∧: The relation M �l ψ1 ∧ ψ2 holds, iff M �l ψ1 and M �l ψ2
holds.

→: The relation M �l ψ1 → ψ2 holds, iff M �l ψ2 holds

whenever M �l ψ1 holds.
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Example.

F
def
= ∅

P
def
= {P,Q,R} (unary, unary, binary)

Model M:

A
def
= {a, b}

PM def
= {a, b} QM def

= {a} RM def
= {(a, a), (a, b)}

Is

M �l ∀x∀y(P (x) ∧ ∃x(Q(x) ∧R(x, y)))

with

look-up table l
x b
y b

That is: l(x) = b, l(y) = b

26



If l and l′ are identical on all free variables in φ, then . . .

If φ has no free variables, then . . .

Notation M � φ

Sentence φ
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Example 2.19.

F
def
= {alma} (constant)

P
def
= {loves} (binary)

Model M:

A
def
= {a, b, c}

almaM def
= a

lovesM
def
= {(a, a), (b, a), (c, a)}

None of Alma’s lovers’ lovers love her.

In predicate logic: φ = . . .

Is M � φ ?

28



Example 2.19.

F
def
= {alma} (constant)

P
def
= {loves} (binary)

Model M′:

A
def
= {a, b, c}

almaM′ def
= a

lovesM
′ def
= {(b, a), (c, b)}

None of Alma’s lovers’ lovers love her.

In predicate logic: φ = . . .

Is M ′
� φ ?

29


