Fundamentele Informatica 3

voorjaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 9, 4+5 april 2016
9. Undecidable Problems
9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem

A slide from lecture 8:

From Fundamentele Informatica 1:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f: \mathbb{N} \rightarrow A$, or a list a_{0}, a_{1}, \ldots of elements of A such that every element of A appears exactly once in the list.
A is countable if A is either finite or countably infinite.

A slide from lecture 8:

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^{*}$ are the same size, there are uncountably many languages over $\{0,1\}$

A slide from lecture 8:

Example 8.31. The Set $2^{\mathbb{N}}$ is Uncountable (continued)

No list of subsets of \mathbb{N} is complete,
i.e., every list $A_{0}, A_{1}, A_{2}, \ldots$ of subsets of \mathbb{N} leaves out at least one.

Take

$$
A=\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\}
$$

A slide from lecture 8:
Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$
\begin{aligned}
A & =\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\} \\
A_{0} & =\{0,2,5,9, \ldots\} \\
A_{1} & =\{1,2,3,8,12, \ldots\} \\
A_{2} & =\{0,3,6\} \\
A_{3} & =\emptyset \\
A_{4} & =\{4\} \\
A_{5} & =\{2,3,5,7,11, \ldots\} \\
A_{6} & =\{8,16,24, \ldots\} \\
A_{7} & =\mathbb{N} \\
A_{8} & =\{1,3,5,7,9, \ldots\} \\
A_{9} & =\{n \in \mathbb{N} \mid n>12\}
\end{aligned}
$$

A slide from lecture 8:

	0	1	2	3	4	5	6	7	8	9	\ldots
$A_{0}=\{0,2,5,9, \ldots\}$	1	0	1	0	0	1	0	0	0	1	\ldots
$A_{1}=\{1,2,3,8,12, \ldots\}$	0	1	1	1	0	0	0	0	1	0	\ldots
$A_{2}=\{0,3,6\}$	1	0	0	1	0	0	1	0	0	0	\ldots
$A_{3}=\emptyset$	0	0	0	0	0	0	0	0	0	0	\ldots
$A_{4}=\{4\}$	0	0	0	0	1	0	0	0	0	0	\ldots
$A_{5}=\{2,3,5,7,11, \ldots\}$	0	0	1	1	0	1	0	1	0	0	\ldots
$A_{6}=\{8,16,24, \ldots\}$	0	0	0	0	0	0	0	0	1	0	\ldots
$A_{7}=\mathbb{N}$	1	1	1	1	1	1	1	1	1	1	\ldots
$A_{8}=\{1,3,5,7,9, \ldots\}$	0	1	0	1	0	1	0	1	0	1	\ldots
$A_{9}=\{n \in \mathbb{N} \mid n>12\}$	0	0	0	0	0	0	0	0	0	0	\ldots

A slide from lecture 8:

$$
\begin{array}{l|lllllllllll}
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\hline A_{0}=\{0,2,5,9, \ldots\} \\
A_{1}=\{1,2,3,8,12, \ldots\} & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \ldots \\
A_{2}=\{0,3,6\} & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
A_{3}=\emptyset & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
A_{4}=\{4\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{5}=\{2,3,5,7,11, \ldots\} \\
A_{6}=\{8,16,24, \ldots\} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{7}=\mathbb{N} & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & \ldots \\
A_{8}=\{1,3,5,7,9, \ldots\} \\
A_{9}=\{n \in \mathbb{N} \mid n>12\} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\hline A=\{2,3,6,8,9, \ldots\} & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \ldots
\end{array}
$$

Hence, there are uncountably many subsets of \mathbb{N}.

Set-up of Example 8.31:

1. Start with list of all subsets of \mathbb{N} : $A_{0}, A_{1}, A_{2}, \ldots$, each one associated with specific element of \mathbb{N} (namely i)
2. Define another subset A by:
$i \in A \Longleftrightarrow i \notin A_{i}$
3. Conclusion: for all $i, A \neq A_{i}$ Hence, contradiction
Hence, there are uncountably many subsets of \mathbb{N}

Exercise 8.45.

The two parts of this exercise show that for every set S (not necessarily countable), 2^{S} is larger than S.
a. For every S, describe a simple bijection from S to a subset of 2^{S}.
b. Show that for every S, there is no bijection from S to 2^{S}. (You can copy the proof in Example 8.31, as long as you avoid trying to list the elements of S or making any reference to the countability of S.)

9. Undecidable Problems

9.1. A Language

That Can't Be Accepted,
and a Problem That Can't Be Decided

A slide from lecture 5:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
T decides L,
if T computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$
A language L is recursively enumerable, if there is a TM that accepts L,
and L is recursive,
if there is a TM that decides L.

Set-up of Example 8.31:

1. Start with list of all subsets of \mathbb{N} : $A_{0}, A_{1}, A_{2}, \ldots$, each one associated with specific element of \mathbb{N} (namely i)
2. Define another subset A by:
$i \in A \Longleftrightarrow i \notin A_{i}$
3. Conclusion: for all $i, A \neq A_{i}$ Hence, contradiction
Hence, there are uncountably many subsets of \mathbb{N}

Set-up of constructing language that is not RE:

1. Start with list of all RE languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$
2. Define another language L by:
$x \in L \Longleftrightarrow x \notin$ (language that x is associated with)
3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				

	$e\left(T_{0}\right)$	$e\left(T_{1}\right)$	$e\left(T_{2}\right)$	$e\left(T_{3}\right)$	$e\left(T_{4}\right)$	$e\left(T_{5}\right)$	$e\left(T_{6}\right)$	$e\left(T_{7}\right)$	$e\left(T_{8}\right)$	$e\left(T_{9}\right)$
$L\left(T_{0}\right)$	1	0	1	0	0	1	0	0	0	1
$L\left(T_{1}\right)$	0	1	1	1	0	0	0	0	1	0
$L\left(T_{2}\right)$	1	0	0	1	0	0	1	0	0	0
$L\left(T_{3}\right)$	0	0	0	0	0	0	0	0	0	0
$L\left(T_{4}\right)$	0	0	0	0	1	0	0	0	0	0
$L\left(T_{5}\right)$	0	0	1	1	0	1	0	1	0	0
$L\left(T_{6}\right)$	0	0	0	0	0	0	0	0	1	0
$L\left(T_{7}\right)$	1	1	1	1	1	1	1	1	1	1
$L\left(T_{8}\right)$	0	1	0	1	0	1	0	1	0	1
$L\left(T_{9}\right)$	0	0	0	0	0	0	0	0	0	0
\ldots						\ldots				
NSA	0	0	1	1	0	0	1	0	1	1

Hence, NSA is not recursively enumerable.

A slide from lecture 4:

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Set-up of constructing language NSA that is not RE:

1. Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e\left(T_{i}\right)$)
2. Define another language NSA by:

$$
e\left(T_{i}\right) \in N S A \Longleftrightarrow e\left(T_{i}\right) \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, N S A \neq L\left(T_{i}\right)$

Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^{*}$): $\{L(T) \mid$ TM $T\}$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e(T)$)
2. Define another language NSA by:
$e(T) \in N S A \Longleftrightarrow e(T) \notin L(T)$
3. Conclusion: for all TM T, NSA $\neq L(T)$ Hence, NSA is not RE

Set-up of constructing language L that is not RE:

1. Start with list of all $R E$ languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely x_{i})
2. Define another language L by:

$$
x_{i} \in L \Longleftrightarrow x_{i} \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, L is not RE

Every infinite list $x_{0}, x_{1}, x_{2}, \ldots$ of different elements of $\{0,1\}^{*}$ yields language L that is not RE

Definition 9.1. The Languages NSA and SA

Let

$$
\begin{aligned}
\text { NSA } & =\{e(T) \mid T \text { is a TM, and } e(T) \notin L(T)\} \\
S A & =\{e(T) \mid T \text { is a TM, and } e(T) \in L(T)\}
\end{aligned}
$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 4:

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof. . .

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that $S A$ is recursively enumerable.

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ... ?
yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

Decision problems

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E^{\prime} : strings not representing instances

For general decision problem P, an encoding e of instances I as strings $e(I)$ over alphabet Σ is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding $e(I)$
2. e is injective
3. string $e(I)$ can be decoded

A slide from lecture 4:

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

Theorem 9.4. The decision problem Self-Accepting is undecidable.

Proof. . .

For every decision problem, there is complementary problem P^{\prime}, obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:
Given a TM T, does T fail to accept $e(T)$?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P^{\prime} is decidable.

Proof. . .

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

1. Recursive algorithms
2. Given NFA M and string x, is $x \in L(M)$?
3. Given FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

Theorem 2.15.

Suppose $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)$ are finite automata accepting L_{1} and L_{2}, respectively.
Let M be the FA ($Q, \Sigma, q_{0}, A, \delta$), where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& q_{0}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

and the transition function δ is defined by the formula

$$
\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)
$$

for every $p \in Q_{1}$, every $q \in Q_{2}$, and every $\sigma \in \Sigma$.
Then

1. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, M accepts the language $L_{1} \cup L_{2}$.
2. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$,
M accepts the language $L_{1} \cap L_{2}$.
3. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$,
M accepts the language $L_{1}-L_{2}$.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1} if and only if $F(I)$ is a yes-instance of P_{2}.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another (continued)

If L_{1} and L_{2} are languages over alphabets Σ_{1} and Σ_{2}, respectively, we say L_{1} is reducible to $L_{2}\left(L_{1} \leq L_{2}\right)$

- if there is a Turing-computable function
- $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$
- such that for every $x \in \Sigma_{1}^{*}$,

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2}
$$

Less / more formal definitions.

Theorem 9.7.

Suppose $L_{1} \subseteq \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}$, and $L_{1} \leq L_{2}$. If L_{2} is recursive, then L_{1} is recursive.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Proof. . .

In context of decidability: decision problem $P \approx$ language $Y(P)$
Question
"is instance I of P a yes-instance ?"
is essentially the same as
"does string x represent yes-instance of P ?",
i.e.,
"is string $x \in Y(P)$?"

Therefore, $P_{1} \leq P_{2}$, if and only if $Y\left(P_{1}\right) \leq Y\left(P_{2}\right)$.

Two more decision problems:
Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w ?

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting \leq Accepts ...

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

Application:

```
n = 4;
while (n is the sum of two primes)
    n = n+2;
```

This program loops forever, if and only if Goldbach's conjecture is true.

