Fundamentele Informatica 3

voorjaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 9, 4+5 april 2016

9. Undecidable Problems9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided9.2. Reductions and the Halting Problem

From Fundamentele Informatica 1:

Definition 8.24. Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f : \mathbb{N} \to A$, or a list a_0, a_1, \ldots of elements of A such that every element of A appears exactly once in the list.

A is *countable* if A is either finite or countably infinite.

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of \mathbb{N} is complete, i.e., every list A_0, A_1, A_2, \ldots of subsets of \mathbb{N} leaves out at least one.

Take

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

$$A_0 = \{0, 2, 5, 9, \ldots\}$$

$$A_1 = \{1, 2, 3, 8, 12, \ldots\}$$

$$A_2 = \{0, 3, 6\}$$

$$A_3 = \emptyset$$

$$A_4 = \{4\}$$

$$A_5 = \{2, 3, 5, 7, 11, \ldots\}$$

$$A_6 = \{8, 16, 24, \ldots\}$$

$$A_7 = \mathbb{N}$$

$$A_8 = \{1, 3, 5, 7, 9, \ldots\}$$

$$A_9 = \{n \in \mathbb{N} \mid n > 12\}$$

. . .

	0	1	2	3	4	5	6	7	8	9	• • •
$A_0 = \{0, 2, 5, 9, \ldots\}$	1	0	1	0	0	1	0	0	0	1	• • •
$A_1 = \{1, 2, 3, 8, 12, \ldots\}$	0	1	1	1	0	0	0	0	1	0	• • •
$A_2 = \{0, 3, 6\}$	1	0	0	1	0	0	1	0	0	0	• • •
$A_3 = \emptyset$	0	0	0	0	0	0	0	0	0	0	• • •
$A_4 = \{4\}$	0	0	0	0	1	0	0	0	0	0	• • •
$A_5 = \{2, 3, 5, 7, 11, \ldots\}$	0	0	1	1	0	1	0	1	0	0	• • •
$A_6 = \{8, 16, 24, \ldots\}$	0	0	0	0	0	0	0	0	1	0	• • •
$A_7 = \mathbb{N}$	1	1	1	1	1	1	1	1	1	1	• • •
$A_8 = \{1, 3, 5, 7, 9, \ldots\}$	0	1	0	1	0	1	0	1	0	1	• • •
$A_9 = \{n \in \mathbb{N} \mid n > 12\}$	0	0	0	0	0	0	0	0	0	0	• • •
• • •						••	•				

A slide from lecture 8:

	0	1	2	3	4	5	6	7	8	9	• • •
$A_0 = \{0, 2, 5, 9, \ldots\}$	1	0	1	0	0	1	0	0	0	1	• • •
$A_1 = \{1, 2, 3, 8, 12, \ldots\}$	0	1	1	1	0	0	0	0	1	0	• • •
$A_2 = \{0, 3, 6\}$	1	0	0	1	0	0	1	0	0	0	• • •
$A_3 = \emptyset$	0	0	0	0	0	0	0	0	0	0	• • •
$A_4 = \{4\}$	0	0	0	0	1	0	0	0	0	0	• • •
$A_5 = \{2, 3, 5, 7, 11, \ldots\}$	0	0	1	1	0	1	0	1	0	0	• • •
$A_6 = \{8, 16, 24, \ldots\}$	0	0	0	0	0	0	0	0	1	0	• • •
$A_7 = \mathbb{N}$	1	1	1	1	1	1	1	1	1	1	• • •
$A_8 = \{1, 3, 5, 7, 9, \ldots\}$	0	1	0	1	0	1	0	1	0	1	• • •
$A_9 = \{n \in \mathbb{N} \mid n > 12\}$	0	0	0	0	0	0	0	0	0	0	• • •
• • •											
$A = \{2, 3, 6, 8, 9, \ldots\}$	0	0	1	1	0	0	1	0	1	1	• • •

Hence, there are uncountably many subsets of $\ensuremath{\mathbb{N}}.$

Set-up of Example 8.31:

- 1. Start with list of all subsets of \mathbb{N} : A_0, A_1, A_2, \ldots , each one associated with specific element of \mathbb{N} (namely *i*)
- 2. Define another subset A by: $i \in A \iff i \notin A_i$
- 3. Conclusion: for all i, $A \neq A_i$ Hence, contradiction Hence, there are uncountably many subsets of \mathbb{N}

Exercise 8.45.

The two parts of this exercise show that for every set S (not necessarily countable), 2^S is larger than S.

a. For every S, describe a simple bijection from S to a subset of 2^S .

b. Show that for every S, there is no bijection from S to 2^S . (You can copy the proof in Example 8.31, as long as you avoid trying to list the elements of S or making any reference to the countability of S.)

9. Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L \subseteq \Sigma^*$, if L(T) = L.

T decides L, if T computes the characteristic function $\chi_L : \Sigma^* \to \{0, 1\}$

A language L is *recursively enumerable*, if there is a TM that accepts L,

and L is *recursive*, if there is a TM that decides L. Set-up of Example 8.31:

- 1. Start with list of all subsets of \mathbb{N} : A_0, A_1, A_2, \ldots , each one associated with specific element of \mathbb{N} (namely *i*)
- 2. Define another subset A by: $i \in A \iff i \notin A_i$
- 3. Conclusion: for all i, $A \neq A_i$ Hence, contradiction Hence, there are uncountably many subsets of \mathbb{N}

Set-up of constructing language that is not RE:

- 1. Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2), \ldots$ each one associated with specific element of $\{0,1\}^*$
- 2. Define another language L by: $x \in L \iff x \notin (\text{language that } x \text{ is associated with})$
- 3. Conclusion: for all $i, L \neq L(T_i)$ Hence, L is not RE

	$e(T_0)$	$e(T_1)$	$e(T_2)$	$e(T_{3})$	$e(T_4)$	$e(T_5)$	$e(T_6)$	$e(T_7)$	$e(T_8)$	$e(T_9)$
$L(T_0)$	1	0	1	0	0	1	0	0	0	1
$L(T_1)$	0	1	1	1	0	0	0	0	1	0
$L(T_2)$	1	0	0	1	0	0	1	0	0	0
$L(T_{3})$	0	0	0	0	0	0	0	0	0	0
$L(T_4)$	0	0	0	0	1	0	0	0	0	0
$L(T_5)$	0	0	1	1	0	1	0	1	0	0
$L(T_6)$	0	0	0	0	0	0	0	0	1	0
$L(T_{7})$	1	1	1	1	1	1	1	1	1	1
$L(T_{8})$	0	1	0	1	0	1	0	1	0	1
$L(T_9)$	0	0	0	0	0	0	0	0	0	0
•••						• • •				

	$e(T_0)$	$e(T_1)$	$e(T_2)$	$e(T_3)$	$e(T_4)$	$e(T_5)$	$e(T_6)$	$e(T_{7})$	$e(T_{8})$	$e(T_9)$
$L(T_0)$	1	0	1	0	0	1	0	0	0	1
$L(T_1)$	0	1	1	1	0	0	0	0	1	0
$L(T_{2})$	1	0	0	1	0	0	1	0	0	0
$L(T_3)$	0	0	0	0	0	0	0	0	0	0
$L(T_4)$	0	0	0	0	1	0	0	0	0	0
$L(T_5)$	0	0	1	1	0	1	0	1	0	0
$L(T_6)$	0	0	0	0	0	0	0	0	1	0
$L(T_{7})$	1	1	1	1	1	1	1	1	1	1
$L(T_8)$	0	1	0	1	0	1	0	1	0	1
$L(T_9)$	0	0	0	0	0	0	0	0	0	0
• • •						• • •				
NSA	0	0	1	1	0	0	1	0	1	1

Hence, NSA is not recursively enumerable.

Some Crucial features of any encoding function *e*:

1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Set-up of constructing language NSA that is not RE:

- 1. Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2), \ldots$ each one associated with specific element of $\{0,1\}^*$ (namely $e(T_i)$)
- 2. Define another language NSA by: $e(T_i) \in NSA \iff e(T_i) \notin L(T_i)$
- 3. Conclusion: for all *i*, $NSA \neq L(T_i)$ Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

- 1. Start with collection of all RE languages over $\{0, 1\}$ (which are subsets of $\{0, 1\}^*$): $\{L(T) \mid \mathsf{TM} T\}$ each one associated with specific element of $\{0, 1\}^*$ (namely e(T))
- 2. Define another language NSA by: $e(T) \in NSA \iff e(T) \notin L(T)$
- 3. Conclusion: for all TM T, $NSA \neq L(T)$ Hence, NSA is not RE

Set-up of constructing language L that is not RE:

- 1. Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2), \ldots$ each one associated with specific element of $\{0,1\}^*$ (namely x_i)
- 2. Define another language L by: $x_i \in L \iff x_i \notin L(T_i)$
- 3. Conclusion: for all $i, L \neq L(T_i)$ Hence, L is not RE

Every infinite list x_0, x_1, x_2, \ldots of different elements of $\{0, 1\}^*$ yields language *L* that is not RE

Definition 9.1. The Languages NSA and SA

Let

$$NSA = \{e(T) \mid T \text{ is a TM, and } e(T) \notin L(T)\}$$
$$SA = \{e(T) \mid T \text{ is a TM, and } e(T) \in L(T)\}$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

Some Crucial features of any encoding function *e*:

1. It should be possible to decide algorithmically, for any string $w \in \{0, 1\}^*$, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof...

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that *SA* is recursively enumerable.

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

yes-instances of a decision problem: instances for which the answer is 'yes'

no-instances of a decision problem: instances for which the answer is 'no' **Decision problems**

Given an undirected graph G = (V, E), does G contain a Hamiltonian path?

Given a list of integers x_1, x_2, \ldots, x_n , is the list sorted?

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. *NSA*: strings representing no-instances

3. . . .

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. NSA: strings representing no-instances
- 3. E': strings not representing instances

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called *reasonable*, if

- 1. there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective
- 3. string e(I) can be decoded

Some Crucial features of any encoding function *e*:

1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

$$N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$$

$$E(P) = Y(P) \cup N(P)$$

E(P) must be recursive

Definition 9.3. Decidable Problems

If *P* is a decision problem, and *e* is a reasonable encoding of instances of *P* over the alphabet Σ , we say that *P* is *decidable* if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Theorem 9.4. The decision problem *Self-Accepting* is undecidable.

Proof...

For every decision problem, there is *complementary* problem P', obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting: Given a TM T, does T fail to accept e(T) ? **Theorem 9.5.** For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

Proof...

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

- 1. Recursive algorithms
- 2. Given NFA M and string x, is $x \in L(M)$?
- 3. Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Theorem 2.15.

Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA $(Q, \Sigma, q_0, A, \delta)$, where

 $Q = Q_1 \times Q_2$

 $q_0 = (q_1, q_2)$

and the transition function δ is defined by the formula

 $\delta((p,q),\sigma) = (\delta_1(p,\sigma), \delta_2(q,\sigma))$ for every $p \in Q_1$, every $q \in Q_2$, and every $\sigma \in \Sigma$.

Then

1. If
$$A = \{(p,q) | p \in A_1 \text{ or } q \in A_2\}$$
,
 M accepts the language $L_1 \cup L_2$.
2. If $A = \{(p,q) | p \in A_1 \text{ and } q \in A_2\}$,
 M accepts the language $L_1 \cap L_2$.
3. If $A = \{(p,q) | p \in A_1 \text{ and } q \notin A_2\}$,
 M accepts the language $L_1 - L_2$.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$)

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that

for every I the answers for the two instances are the same, or I is a yes-instance of P_1

if and only if F(I) is a yes-instance of P_2 .

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another (continued)

If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2 , respectively, we say L_1 is reducible to L_2 ($L_1 \leq L_2$)

- if there is a Turing-computable function
- $f: \Sigma_1^* \to \Sigma_2^*$
- such that for every $x \in \Sigma_1^*$,

 $x \in L_1$ if and only if $f(x) \in L_2$

Less / more formal definitions.

Theorem 9.7.

Suppose $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, and $L_1 \leq L_2$. If L_2 is recursive, then L_1 is recursive.

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Proof...

In context of decidability: decision problem $P \approx$ language Y(P)

Question

"is instance I of P a yes-instance ?"

is essentially the same as

"does string x represent yes-instance of P?",

i.e.,

"is string $x \in Y(P)$?"

Therefore, $P_1 \leq P_2$, if and only if $Y(P_1) \leq Y(P_2)$.

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w?

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

- 1. Prove that Self-Accepting \leq Accepts ...
- 2. Prove that $Accepts \leq Halts \dots$

Application:

```
n = 4;
while (n is the sum of two primes)
n = n+2;
```

This program loops forever, if and only if Goldbach's conjecture is true.