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8. Recursively Enumerable Languages

8.5. Not Every Language is Recursively Enumerable
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A slide from lecture 7

Chomsky hierarchy

3 reg. languages FA reg. grammar reg. expression

2 cf. languages PDA cf. grammar

1 cs. languages LBA cs. grammar

0 re. languages TM unrestr. grammar

S3 ⊆ S2 ⊆ S1 ⊆ R ⊆ S0

(modulo Λ)
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8.5. Not Every Language
is Recursively Enumerable
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From Fundamentele Informatica 1:

Definition 8.23.

A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if

there is a bijection f : A → B.

A is larger than B if some subset of A is the same size as B but

A itself is not.
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From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a

bijection f : N → A, or a list a0, a1, . . . of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.
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Theorem 8.25.

Every infinite set has a countably infinite subset,

and every subset of a countable set is countable.

Proof. . .

(proof of second claim is Exercise 8.35. . . )
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Example 8.26. The Set N× N is Countable

N× N = {(i, j) | i, j ∈ N}

although N× N looks much bigger than N

(0,0) (0,1) (0,2) (0,3) . . .
(1,0) (1,1) (1,2) (1,3) . . .
(2,0) (2,1) (2,2) (2,3) . . .
(3,0) (3,1) (3,2) (3,3) . . .
. . . . . . . . . . . . . . .
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Example 8.28.

A Countable Union of Countable Sets Is Countable

S =
∞⋃

i=0

Si

Same construction as in Example 8.26, but. . .
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Example 8.29. Languages Are Countable Sets

L ⊆ Σ∗ =
∞⋃

i=0

Σi

Two ways to list Σ∗

L ⊆ Σ∗
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A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w ∈ {0,1}∗, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with

a given input alphabet Σ, or at most one string z.

3. If w = e(T ) or w = e(z), there should be an algorithm for

decoding w.

11



A slide from lecture 4

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.
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A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.
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A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0
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Example 8.30. The Set of Turing Machines Is Countable

Let T (Σ) be set of Turing machines with input alphabet Σ

There is injective function e : T (Σ) → {0,1}∗

(e is encoding function)

Hence (. . . ), set of recursively enumerable languages is countable
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Exercise 8.41.

For each case below, determine whether the given set is count-

able or uncountable. Prove your answer.

a0. The set of all one-element subsets of N.

a1. The set of all two-element subsets of N.

a. The set of all three-element subsets of N.

b. The set of all finite subsets of N.
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}∗ are the same size,

there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,

i.e., every list A0, A1, A2, . . . of subsets of N leaves out at least

one.

Take

A = {i ∈ N | i /∈ Ai}
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Example 8.31. The Set 2N Is Uncountable (continued)

A = {i ∈ N | i /∈ Ai}

A0 = {0,2,5,9, . . .}

A1 = {1,2,3,8,12, . . .}

A2 = {0,3,6}

A3 = ∅

A4 = {4}

A5 = {2,3,5,7,11, . . .}

A6 = {8,16,24, . . .}

A7 = N

A8 = {1,3,5,7,9, . . .}

A9 = {n ∈ N | n > 12}

. . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
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0 1 2 3 4 5 6 7 8 9 . . .
A0 = {0,2,5,9, . . .} 1 0 1 0 0 1 0 0 0 1 . . .
A1 = {1,2,3,8,12, . . .} 0 1 1 1 0 0 0 0 1 0 . . .
A2 = {0,3,6} 1 0 0 1 0 0 1 0 0 0 . . .
A3 = ∅ 0 0 0 0 0 0 0 0 0 0 . . .
A4 = {4} 0 0 0 0 1 0 0 0 0 0 . . .
A5 = {2,3,5,7,11, . . .} 0 0 1 1 0 1 0 1 0 0 . . .
A6 = {8,16,24, . . .} 0 0 0 0 0 0 0 0 1 0 . . .
A7 = N 1 1 1 1 1 1 1 1 1 1 . . .
A8 = {1,3,5,7,9, . . .} 0 1 0 1 0 1 0 1 0 1 . . .
A9 = {n ∈ N | n > 12} 0 0 0 0 0 0 0 0 0 0 . . .

. . . . . .
A = {2,3,6,8,9, . . .} 0 0 1 1 0 0 1 0 1 1 . . .

Hence, there are uncountably many subsets of N.
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Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively

enumerable is uncountable.

Proof. . .

(including Exercise 8.38)
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Exercise 8.38.

Show that if S is uncountable and T is countable, then S − T is

uncountable.

Suggestion: proof by contradiction.
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Theorem 8.25.

Every infinite set has a countably infinite subset,

and every subset of a countable set is countable.

Proof. . .

(proof of second claim is Exercise 8.35. . . )
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Part of a slide from lecture 5

Theorem 8.9. For every language L ⊆ Σ∗,

• L is recursively enumerable

if and only if there is a TM enumerating L,
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Exercise 8.39.

Let Q be the set of all rational numbers, or fractions, negative

as well as nonnegative.

Show that Q is countable by describing explicitly a bijection from

N to Q — in other words, a way of creating a list of rational

numbers that contains every rational number exactly once.

26



Exercise 8.42.

We know that 2N is uncountable.

Give an example of a set S ⊆ 2N such that both S and 2N − S

are uncountable.
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