Fundamentele Informatica 3

voorjaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 8, 29 maart 2016

8. Recursively Enumerable Languages
 8.5. Not Every Language is Recursively Enumerable

Huiswerkopgave 2, inleverdatum 5 april 2016, 13:45 uur

Chomsky hierarchy

3	reg. languages	FA	reg. grammar	reg. expression
2	cf. languages	PDA	cf. grammar	
1	cs. languages	LBA	cs. grammar	
0	re. languages	TM	unrestr. grammar	

$\mathcal{S}_3 \subseteq \mathcal{S}_2 \subseteq \mathcal{S}_1 \subseteq \mathcal{R} \subseteq \mathcal{S}_0$

(modulo Λ)

8.5. Not Every Language is Recursively Enumerable

From Fundamentele Informatica 1:

Definition 8.23. A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if there is a bijection $f : A \rightarrow B$.

A is larger than B if some subset of A is the same size as B but A itself is not.

From Fundamentele Informatica 1:

Definition 8.24. Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f : \mathbb{N} \to A$, or a list a_0, a_1, \ldots of elements of A such that every element of A appears exactly once in the list.

A is *countable* if A is either finite or countably infinite.

Theorem 8.25.

Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

Proof...

(proof of second claim is Exercise 8.35...)

Example 8.26. The Set $\mathbb{N} \times \mathbb{N}$ is Countable

$$\mathbb{N} \times \mathbb{N} = \{(i,j) \mid i,j \in \mathbb{N}\}$$

although $\mathbb{N}\times\mathbb{N}$ looks much bigger than \mathbb{N}

Example 8.28.

A Countable Union of Countable Sets Is Countable

$$S = \bigcup_{i=0}^{\infty} S_i$$

Same construction as in Example 8.26, but...

Example 8.29. Languages Are Countable Sets

$$L \subseteq \Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$$

Two ways to list Σ^\ast

 $L\subseteq \mathbf{\Sigma}^*$

Some Crucial features of any encoding function *e*:

1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

Assumptions:

- 1. Names of the states are irrelevant.
- 2. Tape alphabet Γ of every Turing machine T is subset of infinite set $S = \{a_1, a_2, a_3, \ldots\}$, where $a_1 = \Delta$.

Definition 7.33. An Encoding Function

Assign numbers to each state: $n(h_a) = 1$, $n(h_r) = 2$, $n(q_0) = 3$, $n(q) \ge 4$ for other $q \in Q$.

Assign numbers to each tape symbol: $n(a_i) = i$.

Assign numbers to each tape head direction: n(R) = 1, n(L) = 2, n(S) = 3.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma) = (q,\tau,D)$

$$e(m) = 1^{n(p)} 0 1^{n(\sigma)} 0 1^{n(q)} 0 1^{n(\tau)} 0 1^{n(D)} 0$$

We list the moves of T in some order as $m_1,m_2,\ldots,m_k,$ and we define

$$e(T) = e(m_1)0e(m_2)0\dots 0e(m_k)0$$

If $z = z_1 z_2 \dots z_j$ is a string, where each $z_i \in S$, $e(z) = \mathbf{0} \mathbf{1}^{n(z_1)} \mathbf{0} \mathbf{1}^{n(z_2)} \mathbf{0} \dots \mathbf{0} \mathbf{1}^{n(z_j)} \mathbf{0}$ Example 8.30. The Set of Turing Machines Is Countable

Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet Σ There is injective function $e : \mathcal{T}(\Sigma) \to \{0, 1\}^*$ (*e* is encoding function)

Hence (...), set of recursively enumerable languages is countable

Exercise 8.41.

For each case below, determine whether the given set is countable or uncountable. Prove your answer.

a0. The set of all one-element subsets of \mathbb{N} .

a1. The set of all two-element subsets of \mathbb{N} .

a. The set of all three-element subsets of \mathbb{N} .

b. The set of all finite subsets of \mathbb{N} .

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because \mathbb{N} and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$ **Example 8.31.** The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of \mathbb{N} is complete, i.e., every list A_0, A_1, A_2, \ldots of subsets of \mathbb{N} leaves out at least

one. every list A_0, A_1, A_2, \ldots of subsets of \mathbb{N} leaves out at least

Take

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

$$A_0 = \{0, 2, 5, 9, \dots\}$$

$$A_1 = \{1, 2, 3, 8, 12, \dots\}$$

$$A_2 = \{0, 3, 6\}$$

$$A_3 = \emptyset$$

$$A_4 = \{4\}$$

$$A_5 = \{2, 3, 5, 7, 11, \dots\}$$

$$A_6 = \{8, 16, 24, \dots\}$$

$$A_7 = \mathbb{N}$$

$$A_8 = \{1, 3, 5, 7, 9, \dots\}$$

$$A_9 = \{n \in \mathbb{N} \mid n > 12\}$$

• • •

19

	0	1	2	3	4	5	6	7	8	9	•••
$A_0 = \{0, 2, 5, 9, \ldots\}$	1	0	1	0	0	1	0	0	0	1	• • •
$A_1 = \{1, 2, 3, 8, 12, \ldots\}$	0	1	1	1	0	0	0	0	1	0	• • •
$A_2 = \{0, 3, 6\}$	1	0	0	1	0	0	1	0	0	0	•••
$A_3 = \emptyset$	0	0	0	0	0	0	0	0	0	0	• • •
$A_4 = \{4\}$	0	0	0	0	1	0	0	0	0	0	• • •
$A_5 = \{2, 3, 5, 7, 11, \ldots\}$	0	0	1	1	0	1	0	1	0	0	• • •
$A_6 = \{8, 16, 24, \ldots\}$	0	0	0	0	0	0	0	0	1	0	•••
$A_7 = \mathbb{N}$	1	1	1	1	1	1	1	1	1	1	•••
$A_8 = \{1, 3, 5, 7, 9, \ldots\}$	0	1	0	1	0	1	0	1	0	1	•••
$A_9 = \{n \in \mathbb{N} \mid n > 12\}$	0	0	0	0	0	0	0	0	0	0	• • •
						••	•				

	0	1	2	3	4	5	6	7	8	9	• • •
$A_0 = \{0, 2, 5, 9, \ldots\}$	1	0	1	0	0	1	0	0	0	1	• • •
$A_1 = \{1, 2, 3, 8, 12, \ldots\}$	0	1	1	1	0	0	0	0	1	0	• • •
$A_2 = \{0, 3, 6\}$	1	0	0	1	0	0	1	0	0	0	• • •
$A_{3} = \emptyset$	0	0	0	0	0	0	0	0	0	0	• • •
$A_4 = \{4\}$	0	0	0	0	1	0	0	0	0	0	• • •
$A_5 = \{2, 3, 5, 7, 11, \ldots\}$	0	0	1	1	0	1	0	1	0	0	• • •
$A_6 = \{8, 16, 24, \ldots\}$	0	0	0	0	0	0	0	0	1	0	• • •
$A_7 = \mathbb{N}$	1	1	1	1	1	1	1	1	1	1	• • •
$A_8 = \{1, 3, 5, 7, 9, \ldots\}$	0	1	0	1	0	1	0	1	0	1	• • •
$A_9 = \{n \in \mathbb{N} \mid n > 12\}$	0	0	0	0	0	0	0	0	0	0	• • •
• • •						••	•				
$A = \{2, 3, 6, 8, 9, \ldots\}$	0	0	1	1	0	0	1	0	1	1	•••

Hence, there are uncountably many subsets of \mathbb{N} .

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0, 1\}$ that are not recursively enumerable is uncountable.

Proof...

(including Exercise 8.38)

Exercise 8.38.

Show that if S is uncountable and T is countable, then S - T is uncountable.

Suggestion: proof by contradiction.

Theorem 8.25.

Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

Proof...

(proof of second claim is Exercise 8.35...)

Part of a slide from lecture 5

Theorem 8.9. For every language $L \subseteq \Sigma^*$,

• *L* is recursively enumerable

if and only if there is a TM enumerating L,

Exercise 8.39.

Let \mathbb{Q} be the set of all rational numbers, or fractions, negative as well as nonnegative.

Show that \mathbb{Q} is countable by describing explicitly a bijection from \mathbb{N} to \mathbb{Q} — in other words, a way of creating a list of rational numbers that contains every rational number exactly once.

Exercise 8.42.

We know that $2^{\mathbb{N}}$ is uncountable.

Give an example of a set $S\subseteq 2^{\mathbb{N}}$ such that both S and $2^{\mathbb{N}}-S$ are uncountable.