Fundamentele Informatica 3

voorjaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 12, 25 april 2016
9. Undecidable Problems
9.5. Undecidable Problems

Involving Context-Free Languages
10. Computable Functions
10.1. Primitive Recursive Functions

A slide from lecture 11

Theorem 9.20.
These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?
2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

A slide from lecture 11

Definition 9.21. Valid Computations of a TM

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be a Turing machine.
A valid computation of T is a string of the form

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n} \#
$$

if n is even, or

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n}^{r} \#
$$

if n is odd,
where in either case, $\#$ is a symbol not in Γ, and the strings z_{i} represent successive configurations of T on some input string x, starting with the initial configuration z_{0} and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_{T}.

A slide from lecture 11

Theorem 9.22.

For a TM $T=\left(Q, \Sigma,\left\ulcorner, q_{0}, \delta\right)\right.$,

- the set C_{T} of valid computations of T is the intersection of two context-free languages,
- and its complement C_{T}^{\prime} is a context-free language.

Proof. . .

Corollary.

The decision problem

CFGNonEmptyIntersection:
Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?
is undecidable (cf. Theorem 9.20(1)).

Proof.

Let
AcceptsSomething: Given a TM T, is $L(T) \neq \emptyset$?
Prove that AcceptsSomething \leq CFGNonEmptyIntersection

Theorem 9.23. The decision problem

$$
\begin{aligned}
& \text { CFGGeneratesAll: Given a CFG } G \text { with terminal alphabet } \\
& \Sigma \text {, is } L(G)=\Sigma^{*} \text { ? }
\end{aligned}
$$

is undecidable.

Proof.

Let
AcceptsNothing: Given a TM T, is $L(T)=\emptyset$?
Prove that AcceptsNothing \leq CFGGeneratesAll ...

Undecidable Decision Problems (we have discussed)

10. Computable Functions

10.1. Primitive Recursive Functions

Exercise 10.1.

Let F be the set of partial functions from \mathbb{N} to \mathbb{N}. Then $F=C \cup U$, where the functions in C are computable and the ones in U are not.

Show that C is countable and U is not.

Exercise 7.37.

Show that if there is a TM T computing the function $f: \mathbb{N} \rightarrow \mathbb{N}$, then there is another one, T^{\prime}, whose tape alphabet is $\{1\}$.

Exercise 7.37.

Show that if there is a TM T computing the function $f: \mathbb{N} \rightarrow \mathbb{N}$, then there is another one, T^{\prime}, whose tape alphabet is $\{1\}$.

Suggestion: Suppose T has tape alphabet $\Gamma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Encode Δ and each of the a_{i} 's by a string of 1 's and Δ 's of length $n+1$ (for example, encode Δ by $n+1$ blanks, and a_{i} by $1^{i} \Delta^{n+1-i}$). Have T^{\prime} simulate T, but using blocks of $n+1$ tape squares instead of single squares.

Exercise.

How many Turing machines are there having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$?

Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows.
The value $b(0)$ is 0 .
For $n>0$, there are only a finite number of Turing machines having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$. Let $T_{0}, T_{1}, \ldots, T_{m}$ be the TM of this type that eventually halt on input 1^{n}, and for each i, let $n_{T_{i}}$ be the number of 1 's that T_{i} leaves on its tape when it halts after processing the input string 1^{n}. The number $b(n)$ is defined to be the maximum of the numbers $n_{T_{0}}, n_{T_{1}}, \ldots, n_{T_{m}}$.

Show that the total function $b: \mathbb{N} \rightarrow \mathbb{N}$ is not computable.

Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows.
The value $b(0)$ is 0 .
For $n>0$, there are only a finite number of Turing machines having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$. Let $T_{0}, T_{1}, \ldots, T_{m}$ be the TMs of this type that eventually halt on input 1^{n}, and for each i, let $n_{T_{i}}$ be the number of 1 's that T_{i} leaves on its tape when it halts after processing the input string 1^{n}. The number $b(n)$ is defined to be the maximum of the numbers $n_{T_{0}}, n_{T_{1}}, \ldots, n_{T_{m}}$.

Show that the total function $b: \mathbb{N} \rightarrow \mathbb{N}$ is not computable. Suggestion: Suppose for the sake of contradiction that T_{b} is a TM that computes b. Then we can assume without loss of generality that T_{b} has tape-alfabet $\{0,1\}$.

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

3. Projection functions: For each $k \geq 1$ and each i with $1 \leq$ $i \leq k$, the projection function $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
p_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^{k} to \mathbb{N}, and for each i with $1 \leq i \leq k, g_{i}$ is a partial function from \mathbb{N}^{m} to \mathbb{N}.
The partial function obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is the partial function h from \mathbb{N}^{m} to \mathbb{N} defined by the formula

$$
h(X)=f\left(g_{1}(X), g_{2}(X), \ldots, g_{k}(X)\right) \text { for every } X \in \mathbb{N}^{m}
$$

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Add}(x, y)=x+y
$$

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Add}(x, y)=x+y
$$

Structure tree:

Definition 10.3. Primitive Recursive Functions

The set $P R$ of primitive recursive functions is defined as follows.

1. All initial functions are elements of $P R$.
2. For every $k \geq 0$ and $m \geq 0$, if $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $g_{1}, g_{2}, \ldots, g_{k}$: $\mathbb{N}^{m} \rightarrow \mathbb{N}$ are elements of $P R$, then the function $f\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is an element of $P R$.
3. For every $n \geq 0$, every function $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in $P R$, and every function $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ in $P R$, the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ obtained from g and h by primitive recursion is in $P R$.

In other words, the set $P R$ is the smallest set of functions that contains all the initial functions and is closed under the operations of composition and primitive recursion.

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Mult}(x, y)=x * y
$$

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

$x-y$

Example 10.5. Addition, Multiplication and Subtraction

$$
\begin{aligned}
& \qquad \operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\
0 & \text { otherwise }\end{cases} \\
& x \dot{-y}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Sub}(x, 0)= & x \\
\operatorname{Sub}(x, k+1)= & \left(\text { so } g=p_{1}^{1}\right) \\
& \\
& \left(=h(x, k, \operatorname{Sub}(x, k)), \text { so } h=\operatorname{Pred}\left(p_{3}^{3}\right)\right)
\end{aligned}
$$

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\operatorname{Sub}(x, 0)= & x \\
\operatorname{Sub}(x, k+1)= & \quad \operatorname{Pred}(\operatorname{Sub}(x, k)) \\
& \quad\left(=h(x, k, \operatorname{Sub}(x, k)), \text { so } h=\operatorname{Pred}\left(p_{3}^{3}\right)\right)
\end{aligned}
$$

Subp.r.

Theorem 10.4.

Every primitive recursive function is total and computable.

Proof. . .

Theorem 10.4.

Every primitive recursive function is total and computable.

```
i = 0;
v = g(x)
while (i<k)
{ v = h(x,i,v)
    i ++;
}
```


Theorem 10.4.

Every primitive recursive function is total and computable.

PR:
total and computable

Turing-computable functions: not necessarily total

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

$x-y$
n-place predicate P is function from \mathbb{N}^{n} to \{true, false\}
characteristic function χ_{P} defined by

$$
\chi_{P}(X)= \begin{cases}1 & \text { if } P(X) \text { is true } \\ 0 & \text { if } P(X) \text { is false }\end{cases}
$$

We say P is primitive recursive...

Theorem 10.6.

The two-place predicates $L T, E Q, G T, L E, G E$, and $N E$ are primitive recursive.
(LT stands for "less than," and the other five have similarly intuitive abbreviations.)
If P and Q are any primitive recursive n-place predicates, then $P \wedge Q, P \vee Q$ and $\neg P$ are primitive recursive.

Proof. . .

