
Fundamentele Informatica 3

voorjaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 11, 18 april 2016

9. Undecidable Problems

9.4. Post’s Correspondence Problem

9.5. Undecidable Problems

Involving Context-Free Languages

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Huiswerkopgave 3

Reducties en (on-)beslisbaarheid

2

A slide from lecture 10

9.4. Post’s Correspondence Problem

Instance:

10

101

01

100

0

10

100

0

1

010

3

A slide from lecture 10

Instance:

10

101

01

100

0

10

100

0

1

010

Match:

10

101

1

010

01

100

0

10

100

0

100

0

0

10

100

0

4

A slide from lecture 10

Definition 9.14. Post’s Correspondence Problem

An instance of Post’s correspondence problem (PCP) is a set

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of pairs, where n ≥ 1 and the αi’s and βi’s are all nonnull strings
over an alphabet Σ.

The decision problem is this:

Given an instance of this type, do there exist a positive integer
k and a sequence of integers i1, i2, . . . , ik, with each ij satisfying
1 ≤ ij ≤ n, satisfying

αi1αi2 . . . αik = βi1βi2 . . . βik ?

i1, i2, . . . , ik need not all be distinct.

5

A slide from lecture 10

Definition 9.14. Post’s Correspondence Problem (continued)

An instance of the modified Post’s correspondence problem (MPCP)

looks exactly like an instance of PCP, but now the sequence of

integers is required to start with 1. The question can be formu-

lated this way:

Do there exist a positive integer k and a sequence i2, i3, . . . , ik
such that

α1αi2 . . . αik = β1βi2 . . . βik ?

(Modified) correspondence system, match.

6

A slide from lecture 10

Theorem 9.15. MPCP ≤ PCP

Proof.

For instance

I = {(α1, β1), (α2, β2), . . . , (αn, βn)}

of MPCP, construct instance J = F (I) of PCP, such that I is

yes-instance, if and only if J is yes-instance.

7

Theorem 9.16. Accepts ≤ MPCP

The technical details of the proof of this result do not have to

be known for the exam. However, one must be able to carry out

the construction below.

Proof. . .

For every instance (T,w) of Accepts, construct instance F (T,w)

of MPCP, such that . . .

8

A slide from lecture 3

Notation:

description of tape contents: xσy or xy

configuration xqy = xqy∆ = xqy∆∆

initial configuration corresponding to input x: q0∆x

In the third edition of the book, a configuration is denoted as

(q, xy) or (q, xσy) instead of xqy or xqσy.

In one case, we still use this old notation.

9

Example 9.18. A Modified Correspondence System for a TM

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲
✲

✛
✲q0 q1 q2 ha

∆/∆,R ∆/∆,L

a/a,R

b/∆,S

✓✏b/b,R

❄

a, a,R

T accepts . . .

10

Example 9.18. A Modified Correspondence System for a TM

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲
✲

✛
✲q0 q1 q2 ha

∆/∆,R ∆/∆,L

a/a,R

b/∆,S

✓✏b/b,R

❄

a, a,R

T accepts all strings in {a, b}∗ ending with b.

11

Proof of Theorem 9.16. (continued)

Take

(α1, β1) = (#,#q0∆w#)

Pairs of type 1: (a, a) for every a ∈ Γ ∪ {∆}, and (#,#)

Pairs of type 2: corresponding to moves in T , e.g.,

(qa, bp), if δ(q, a) = (p, b, R)

(cqa, pcb), if δ(q, a) = (p, b, L)

12

Proof of Theorem 9.16. (continued)

Take

(α1, β1) = (#,#q0∆w#)

Pairs of type 1: (a, a) for every a ∈ Γ ∪ {∆}, and (#,#)

Pairs of type 2: corresponding to moves in T , e.g.,

(qa, bp), if δ(q, a) = (p, b, R)

(cqa, pcb), if δ(q, a) = (p, b, L)

(q#, pa#), if δ(q,∆) = (p, a, S)

13

Proof of Theorem 9.16. (continued)

Take

(α1, β1) = (#,#q0∆w#)

Pairs of type 1: (a, a) for every a ∈ Γ ∪ {∆}, and (#,#)

Pairs of type 2: corresponding to moves in T , e.g.,

(qa, bp), if δ(q, a) = (p, b, R)

(cqa, pcb), if δ(q, a) = (p, b, L)
(q#, pa#), if δ(q,∆) = (p, a, S)

Pairs of type 3: for every a, b ∈ Γ ∪ {∆}, the pairs

(haa, ha), (aha, ha), (ahab, ha)

One pair of type 4:

(ha##,#)

14

Proof of Theorem 9.16. (continued)

Two assumptions in book:

1. T never moves to hr

2. w 6= Λ (i.e., special initial pair if w = Λ)

These assumptions are not necessary. . .

15

Theorem 9.17.

Post’s correspondence problem is undecidable.

16

Example 9.18. A Modified Correspondence System for a TM

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲
✲

✛
✲q0 q1 q2 ha

∆/∆,R ∆/∆,L

a/a,R

b/∆,S

✓✏b/b,R

❄

a, a,R

T accepts all strings in {a, b}∗ ending with b.

Pairs of type 2:

(q0∆,∆q1) (q0#,∆q1#) (q1a, aq1) (q1b, bq1)
(aq1∆, q2a∆) (bq1∆, q2b∆) . . .

Study this example yourself.

17

9.5. Undecidable Problems
Involving Context-Free Languages

18

For an instance

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of PCP, let. . .

CFG Gα be defined by productions. . .

19

For an instance

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of PCP, let. . .

CFG Gα be defined by productions

Sα → αiSαci | αici (1 ≤ i ≤ n)

Example derivation:

Sα ⇒ α2Sαc2 ⇒ α2α5Sαc5c2 ⇒ α2α5α1Sαc1c5c2 ⇒ α2α5α1α3c3c1c5c2

Unambiguous

20

For an instance

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of PCP, let. . .

CFG Gα be defined by productions

Sα → αiSαci | αici (1 ≤ i ≤ n)

CFG Gβ be defined by productions

Sβ → βiSβci | βici (1 ≤ i ≤ n)

21

Example.

Let I be the following instance of PCP:

10

101

01

100

0

10

100

0

1

010

Gα and Gβ. . .

22

Theorem 9.20.

These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

23

Theorem 9.20.

This problem is undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

Alternative proof. . .

Let CFG G1 be defined by productions

S1 → αiS1β
r
i | αi#βr

i (1 ≤ i ≤ n)

Let CFG G2 be defined by productions

S2 → aS2a | bS2b | a#a | b#b

24

Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

25

Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

Successive configurations zi and zi+1 are almost identical;

hence the language

{z#z′# | z and z′ are config’s of T for which z ⊢ z′}

cannot be described by CFG,

cf. XX = {xx | x ∈ {a, b}∗}.

26

Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

On the other hand, zi#zri+1 is almost a palindrome, and palin-

dromes can be described by CFG.

27

Lemma.

The language

L1 = {z#(z′)r# | z and z′ are config’s of T for which z ⊢ z′}

is context-free.

Proof. . .

28

A slide from lecture 1

Example 5.3. A Pushdown Automaton Accepting SimplePal

SimplePal = {xcxr | x ∈ {a, b}∗}

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩
✧✦
★✥

✲ ✲ ✲q0 q1 q2
c Λ, Z0/Z0

✓✏b,+b

❄

✓✏b, b/Λ

❄

a,+a a, a/Λ

29

Definition 9.21. Valid Computations of a TM

Let T = (Q,Σ,Γ, q0, δ) be a Turing machine.

A valid computation of T is a string of the form

z0#zr1#z2#zr3 . . .#zn#

if n is even, or

z0#zr1#z2#zr3 . . .#zrn#

if n is odd,

where in either case, # is a symbol not in Γ,

and the strings zi represent successive configurations of T on

some input string x, starting with the initial configuration z0 and

ending with an accepting configuration.

The set of valid computations of T will be denoted by CT .

30

Theorem 9.22.

For a TM T = (Q,Σ,Γ, q0, δ),

• the set CT of valid computations of T is the intersection of

two context-free languages,

• and its complement C′
T is a context-free language.

Proof. . .

31

Theorem 9.22.

For a TM T = (Q,Σ,Γ, q0, δ),

• the set CT of valid computations of T is the intersection of

two context-free languages,

• and its complement C′
T is a context-free language.

Proof. Let

L1 = {z#(z′)r# | z and z′ are config’s of T for which z ⊢ z′}

L2 = {zr#z′# | z and z′ are config’s of T for which z ⊢ z′}

I = {z# | z is initial configuration of T}

A = {z# | z is accepting configuration of T}

A1 = {zr# | z is accepting configuration of T}

32

CT = L3 ∩ L4

where

L3 = IL∗
2(A1 ∪ {Λ})

L4 = L∗
1(A ∪ {Λ})

for each of which we can algorithmically construct a CFG

33

If x ∈ C′
T (i.e., x /∈ CT), then. . .

34

If x ∈ C′
T (i.e., x /∈ CT), then

1. Either, x does not end with #

Otherwise, let x = z0#z1# . . .#zk#

(no reversed strings in this partitioning)

2. Or, for some even i, zi is not configuration of T

3. Or, for some odd i, zri is not configuration of T

4. Or z0 is not initial configuration of T

5. Or zk is neither accepting configuration, nor the reverse of

one

6. Or, for some even i, zi 6 ⊢ zri+1

7. Or, for some odd i, zri 6 ⊢ zi+1

35

If x ∈ C′
T (i.e., x /∈ CT), then

1. Either, x does not end with #

Otherwise, let x = z0#z1# . . .#zk#

2. Or, for some even i, zi is not configuration of T

3. Or, for some odd i, zri is not configuration of T

4. Or z0 is not initial configuration of T

5. Or zk is neither accepting configuration, nor the reverse of

one

6. Or, for some even i, zi 6 ⊢ zri+1

7. Or, for some odd i, zri 6 ⊢ zi+1

Hence, C′
T is union of seven context-free languages,

for each of which we can algorithmically construct a CFG

36

