Fundamentele Informatica 3

voorjaar 2016
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 11, 18 april 2016
9. Undecidable Problems
9.4. Post's Correspondence Problem
9.5. Undecidable Problems

Involving Context-Free Languages

Huiswerkopgave 3

Reducties en (on-)beslisbaarheid

A slide from lecture 10

9.4. Post's Correspondence Problem

Instance:

10
101

01
100

A slide from lecture 10

Instance:

10
101
:---:
100
:---:
10
:---:
0

Match:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

A slide from lecture 10
Definition 9.14. Post's Correspondence Problem
An instance of Post's correspondence problem ($P C P$) is a set

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of pairs, where $n \geq 1$ and the α_{i} 's and β_{i} 's are all nonnull strings over an alphabet Σ.

The decision problem is this:
Given an instance of this type, do there exist a positive integer k and a sequence of integers $i_{1}, i_{2}, \ldots, i_{k}$, with each i_{j} satisfying $1 \leq i_{j} \leq n$, satisfying

$$
\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\beta_{i_{1}} \beta_{i_{2}} \ldots \beta_{i_{k}}
$$

$i_{1}, i_{2}, \ldots, i_{k}$ need not all be distinct.

A slide from lecture 10

Definition 9.14. Post's Correspondence Problem (continued)

An instance of the modified Post's correspondence problem (MPCP) looks exactly like an instance of $P C P$, but now the sequence of integers is required to start with 1 . The question can be formulated this way:

Do there exist a positive integer k and a sequence $i_{2}, i_{3}, \ldots, i_{k}$ such that

$$
\alpha_{1} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\beta_{1} \beta_{i_{2}} \ldots \beta_{i_{k}}
$$

(Modified) correspondence system, match.

A slide from lecture 10

Theorem 9.15. $M P C P \leq P C P$

Proof.

For instance

$$
I=\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of MPCP, construct instance $J=F(I)$ of $P C P$, such that I is yes-instance, if and only if J is yes-instance.

Theorem 9.16. Accepts $\leq M P C P$

The technical details of the proof of this result do not have to be known for the exam. However, one must be able to carry out the construction below.

Proof. . .

For every instance (T, w) of Accepts, construct instance $F(T, w)$ of MPCP, such that ...

A slide from lecture 3

Notation:

description of tape contents: $x \underline{\sigma} y$ or $x \underline{y}$
configuration $x q y=x q y \Delta=x q y \Delta \Delta$
initial configuration corresponding to input x : $q_{0} \Delta x$

In the third edition of the book, a configuration is denoted as ($q, x \underline{y}$) or ($q, x \underline{\sigma} y$) instead of $x q y$ or $x q \sigma y$. In one case, we still use this old notation.

Example 9.18. A Modified Correspondence System for a TM

T accepts...

Example 9.18. A Modified Correspondence System for a TM

T accepts all strings in $\{a, b\}^{*}$ ending with b.

Proof of Theorem 9.16. (continued)

Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)
Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L)
\end{aligned}
$$

Proof of Theorem 9.16. (continued)

Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)

Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L) \\
& (q \#, p a \#), \text { if } \delta(q, \Delta)=(p, a, S)
\end{aligned}
$$

Proof of Theorem 9.16. (continued)
Take

$$
\left(\alpha_{1}, \beta_{1}\right)=\left(\#, \# q_{0} \Delta w \#\right)
$$

Pairs of type 1: (a, a) for every $a \in \Gamma \cup\{\Delta\}$, and (\#, \#)
Pairs of type 2: corresponding to moves in T, e.g.,

$$
\begin{aligned}
& (q a, b p), \text { if } \delta(q, a)=(p, b, R) \\
& (c q a, p c b), \text { if } \delta(q, a)=(p, b, L) \\
& (q \#, p a \#), \text { if } \delta(q, \Delta)=(p, a, S)
\end{aligned}
$$

Pairs of type 3: for every $a, b \in \Gamma \cup\{\Delta\}$, the pairs $\left(h_{a} a, h_{a}\right), \quad\left(a h_{a}, h_{a}\right), \quad\left(a h_{a} b, h_{a}\right)$

One pair of type 4:
($h_{a} \# \#, \#$)

Proof of Theorem 9.16. (continued)

Two assumptions in book:

1. T never moves to h_{r}
2. $w \neq \wedge$ (i.e., special initial pair if $w=\wedge$)

These assumptions are not necessary...

Theorem 9.17.
Post's correspondence problem is undecidable.

Example 9.18. A Modified Correspondence System for a TM

T accepts all strings in $\{a, b\}^{*}$ ending with b.
Pairs of type 2 :

$$
\begin{array}{llll}
\left(q_{0} \Delta, \Delta q_{1}\right) & \left(q_{0} \#, \Delta q_{1} \#\right) & \left(q_{1} a, a q_{1}\right) & \left(q_{1} b, b q_{1}\right) \\
\left(a q_{1} \Delta, q_{2} a \Delta\right) & \left(b q_{1} \Delta, q_{2} b \Delta\right) & \cdots
\end{array}
$$

Study this example yourself.

9.5. Undecidable Problems Involving Context-Free Languages

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions...

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions

$$
S_{\alpha} \rightarrow \alpha_{i} S_{\alpha} c_{i} \mid \alpha_{i} c_{i} \quad(1 \leq i \leq n)
$$

Example derivation:
$S_{\alpha} \Rightarrow \alpha_{2} S_{\alpha} c_{2} \Rightarrow \alpha_{2} \alpha_{5} S_{\alpha} c_{5} c_{2} \Rightarrow \alpha_{2} \alpha_{5} \alpha_{1} S_{\alpha} c_{1} c_{5} c_{2} \Rightarrow \alpha_{2} \alpha_{5} \alpha_{1} \alpha_{3} c_{3} c_{1} c_{5} c_{2}$
Unambiguous

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions

$$
S_{\alpha} \rightarrow \alpha_{i} S_{\alpha} c_{i} \mid \alpha_{i} c_{i} \quad(1 \leq i \leq n)
$$

$\mathrm{CFG} G_{\beta}$ be defined by productions

$$
S_{\beta} \rightarrow \beta_{i} S_{\beta} c_{i} \mid \beta_{i} c_{i} \quad(1 \leq i \leq n)
$$

Example.

Let I be the following instance of PCP:

10
101

01
100

0
10

G_{α} and $G_{\beta} \ldots$

Theorem 9.20.
These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?
2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

Theorem 9.20.
This problem is undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?

Alternative proof. . .

Let CFG G_{1} be defined by productions

$$
S_{1} \rightarrow \alpha_{i} S_{1} \beta_{i}^{r} \quad \mid \quad \alpha_{i} \# \beta_{i}^{r} \quad(1 \leq i \leq n)
$$

Let CFG G_{2} be defined by productions

$$
S_{2} \rightarrow a S_{2} a\left|b S_{2} b\right| a \# a \mid b \# b
$$

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

Successive configurations z_{i} and z_{i+1} are almost identical; hence the language

$$
\left\{z \# z^{\prime} \# \mid z \text { and } z^{\prime} \text { are config's of } T \text { for which } z \vdash z^{\prime}\right\}
$$

cannot be described by CFG,
cf. $X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$.

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

On the other hand, $z_{i} \# z_{i+1}^{r}$ is almost a palindrome, and palindromes can be described by CFG.

Lemma.

The language
$L_{1}=\left\{z \#\left(z^{\prime}\right)^{r} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$ is context-free.

Proof. . .

A slide from lecture 1

Example 5.3. A Pushdown Automaton Accepting SimplePal
SimplePal $=\left\{x c x^{r} \quad \mid x \in\{a, b\}^{*}\right\}$

Definition 9.21. Valid Computations of a TM
Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be a Turing machine.
A valid computation of T is a string of the form

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n} \#
$$

if n is even, or

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n}^{r} \#
$$

if n is odd,
where in either case, \# is a symbol not in Γ, and the strings z_{i} represent successive configurations of T on some input string x, starting with the initial configuration z_{0} and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_{T}.

Theorem 9.22.

For a TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,

- the set C_{T} of valid computations of T is the intersection of two context-free languages,
- and its complement C_{T}^{\prime} is a context-free language.

Proof. . .

Theorem 9.22.

For a TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,

- the set C_{T} of valid computations of T is the intersection of two context-free languages,
- and its complement C_{T}^{\prime} is a context-free language.

Proof. Let
$L_{1}=\left\{z \#\left(z^{\prime}\right)^{r} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$
$L_{2}=\left\{z^{r} \# z^{\prime} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$
$I=\{z \# \mid z$ is initial configuration of $T\}$
$A=\{z \# \mid z$ is accepting configuration of $T\}$
$A_{1}=\left\{z^{r} \# \mid z\right.$ is accepting configuration of $\left.T\right\}$

$$
C_{T}=L_{3} \cap L_{4}
$$

where

$$
\begin{aligned}
& L_{3}=I L_{2}^{*}\left(A_{1} \cup\{\wedge\}\right) \\
& L_{4}=L_{1}^{*}(A \cup\{\wedge\})
\end{aligned}
$$

for each of which we can algorithmically construct a CFG

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then. .

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then

1. Either, x does not end with \#

Otherwise, let $x=z_{0} \# z_{1} \# \ldots \# z_{k} \#$
(no reversed strings in this partitioning)
2. Or, for some even i, z_{i} is not configuration of T
3. Or, for some odd i, z_{i}^{r} is not configuration of T
4. Or z_{0} is not initial configuration of T
5. Or z_{k} is neither accepting configuration, nor the reverse of one
6. Or, for some even $i, z_{i} \nvdash z_{i+1}^{r}$
7. Or, for some odd $i, z_{i}^{r} \nvdash z_{i+1}$

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then

1. Either, x does not end with $\#$

Otherwise, let $x=z_{0} \# z_{1} \# \ldots \# z_{k} \#$
2. Or, for some even i, z_{i} is not configuration of T
3. Or, for some odd i, z_{i}^{r} is not configuration of T
4. Or z_{0} is not initial configuration of T
5. Or z_{k} is neither accepting configuration, nor the reverse of one
6. Or, for some even $i, z_{i} \nvdash z_{i+1}^{r}$
7. Or, for some odd $i, z_{i}^{r} \nvdash z_{i+1}$

Hence, C_{T}^{\prime} is union of seven context-free languages, for each of which we can algorithmically construct a CFG

