Fundamentele Informatica 3

voorjaar 2015
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 9, 7 april 2015
9. Undecidable Problems
9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines

A slide from lecture 8:

Definition 9.1. The Languages $N S A$ and $S A$

Let

$$
\begin{aligned}
\text { NSA } & =\{e(T) \mid T \text { is a TM, and } e(T) \notin L(T)\} \\
S A & =\{e(T) \mid T \text { is a TM, and } e(T) \in L(T)\}
\end{aligned}
$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 8:

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Proof. . .

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ... ?
yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

Decision problems

Given an undirected graph $G=(V, E)$, does G contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. ...

Self-Accepting: Given a TM T, does T accept the string $e(T)$?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E^{\prime} : strings not representing instances

For general decision problem P, an encoding e of instances I as strings $e(I)$ over alphabet Σ is called reasonable, if

1. there is algorithm to decide if string over Σ is encoding $e(I)$
2. e is injective
3. string $e(I)$ can be decoded

A slide from lecture 4:

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with
a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

For general decision problem P and reasonable encoding e,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ, we say that P is decidable if $Y(P)=\{e(I) \mid I$ is a yes-instance of $P\}$ is a recursive language.

Theorem 9.4. The decision problem Self-Accepting is undecidable.

Proof. . .

For every decision problem, there is complementary problem P^{\prime}, obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting:
Given a TM T, does T fail to accept $e(T)$?

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P^{\prime} is decidable.

Proof. . .

SA vs. NSA

Self-Accepting vs. Non-Self-Accepting

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

1. Recursive algorithms
2. Given NFA M and string x, is $x \in L(M)$?
3. Given FAs M_{1} and M_{2}, is $L\left(M_{1}\right) \subseteq L\left(M_{2}\right)$?

Theorem 2.15.

Suppose $M_{1}=\left(Q_{1}, \Sigma, q_{1}, A_{1}, \delta_{1}\right)$ and $M_{2}=\left(Q_{2}, \Sigma, q_{2}, A_{2}, \delta_{2}\right)$ are finite automata accepting L_{1} and L_{2}, respectively.
Let M be the FA ($Q, \Sigma, q_{0}, A, \delta$), where

$$
\begin{aligned}
& Q=Q_{1} \times Q_{2} \\
& q_{0}=\left(q_{1}, q_{2}\right)
\end{aligned}
$$

and the transition function δ is defined by the formula

$$
\delta((p, q), \sigma)=\left(\delta_{1}(p, \sigma), \delta_{2}(q, \sigma)\right)
$$

for every $p \in Q_{1}$, every $q \in Q_{2}$, and every $\sigma \in \Sigma$.
Then

1. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ or $\left.q \in A_{2}\right\}$, M accepts the language $L_{1} \cup L_{2}$.
2. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \in A_{2}\right\}$,
M accepts the language $L_{1} \cap L_{2}$.
3. If $A=\left\{(p, q) \mid p \in A_{1}\right.$ and $\left.q \notin A_{2}\right\}$,
M accepts the language $L_{1}-L_{2}$.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1} if and only if $F(I)$ is a yes-instance of P_{2}.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another (continued)

If L_{1} and L_{2} are languages over alphabets Σ_{1} and Σ_{2}, respectively, we say L_{1} is reducible to $L_{2}\left(L_{1} \leq L_{2}\right)$

- if there is a Turing-computable function
- $f: \Sigma_{1}^{*} \rightarrow \Sigma_{2}^{*}$
- such that for every $x \in \Sigma_{1}^{*}$,

$$
x \in L_{1} \text { if and only if } f(x) \in L_{2}
$$

Less / more formal definitions.

Theorem 9.7. Suppose $L_{1} \subseteq \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}$, and $L_{1} \leq L_{2}$. If L_{2} is recursive, then L_{1} is recursive.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Proof. . .

In context of decidability: decision problem $P \approx$ language $Y(P)$
Question
"is instance I of P a yes-instance ?"
is essentially the same as
"does string x represent yes-instance of P ?",
i.e.,
"is string $x \in Y(P)$?"

Therefore, $P_{1} \leq P_{2}$, if and only if $Y\left(P_{1}\right) \leq Y\left(P_{2}\right)$.

Two more decision problems:
Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w ?

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting \leq Accepts ...

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...
2. Prove that Accepts \leq Halts ...

Application:

```
n = 4;
while (n is the sum of two primes)
    n = n+2;
```

This program loops forever, if and only if Goldbach's conjecture is true.

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are ...

Halts: Given a TM T and a string x, does T halt on input x ? Instances are...

Self-Accepting: Given a TM T, does T accept the string $e(T)$? Instances are...

Now fix a TM T :
T-Accepts: Given a string x, does T accept x ?
Instances are ...
Decidable or undecidable ? (cf. Exercise 9.7.)

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM T such that the decision problem
"Given w, does T accept w ?"
is unsolvable.

Show that every TM accepting a nonrecursive language has this property.

Theorem 9.9. The following five decision problems are undecidable.

1. Accepts-^: Given a $T M T$, is $\Lambda \in L(T)$?

Proof.

1. Prove that Accepts \leq Accepts-^ . . .

Reduction from Accepts to Accepts-^.

Instance of Accepts is (T_{1}, x) for TM T_{1} and string x. Instance of Accepts- \wedge is $\mathrm{TM} T_{2}$.
$T_{2}=F\left(T_{1}, x\right)=$

$$
\operatorname{Write}(x) \rightarrow T_{1}
$$

T_{2} accepts \wedge, if and only if T_{1} accepts x.

If we had an algorithm/TM A_{2} to solve Accepts- \wedge, then we would also have an algorithm/TM A_{1} to solve Accepts, as follows:
A_{1} :
Given instance $\left(T_{1}, x\right)$ of Accepts,

1. construct $T_{2}=F\left(T_{1}, x\right)$;
2. run A_{2} on T_{2}.
A_{1} answers 'yes' for ($\left.T_{1}, x\right)$,
if and only if A_{2} answers 'yes' for T_{2},
if and only T_{2} accepts \wedge,
if and only if T_{1} accepts x.

Theorem 9.9. The following five decision problems are undecidable.
2. AcceptsEverything:

Given a TM T with input alphabet Σ, is $L(T)=\Sigma^{*}$?
Proof.
2. Prove that Accepts-^ \leq AcceptsEverything ...

Theorem 9.9. The following five decision problems are undecidable.
3. Subset: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right) \subseteq L\left(T_{2}\right)$?

Proof.

3. Prove that AcceptsEverything \leq Subset ...

Theorem 9.9. The following five decision problems are undecidable.
4. Equivalent: Given two TMs T_{1} and T_{2}, is $L\left(T_{1}\right)=L\left(T_{2}\right)$

Proof.

4. Prove that Subset \leq Equivalent . . .

Theorem 9.9. The following five decision problems are undecidable.
5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts-^ \leq WritesSymbol ...
