Fundamentele Informatica 3

voorjaar 2015
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 15, 19 mei 2015
10. Computable Functions
10.4. All Computable Functions are μ-Recursive 10.5. Other Approaches to Computability

A slide from lecture 13

Definition 10.9. Bounded Quantifications

Let P be an $(n+1)$-place predicate. The bounded existential quantification of P is the $(n+1)$-place predicate E_{P} defined by $E_{P}(X, k)=($ there exists y with $0 \leq y \leq k$ such that $P(X, y)$ is true)
The bounded universal quantification of P is the $(n+1)$-place predicate A_{P} defined by

$$
A_{P}(X, k)=(\text { for every } y \text { satifying } 0 \leq y \leq k, P(X, y) \text { is true })
$$

A slide from lecture 13

Theorem 10.10.

If P is a primitive recursive $(n+1)$-place predicate, both the predicates E_{P} and A_{P} are also primitive recursive.

Proof. . .

A slide from lecture 13

Definition 10.11. Bounded Minimalization
For an $(n+1)$-place predicate P, the bounded minimalization of P is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$
The symbol μ is often used for the minimalization operator, and we sometimes write

$$
m_{P}(X, k)=\stackrel{k}{\mu} y[P(X, y)]
$$

An important special case is that in which $P(X, y)$ is $(f(X, y)=0)$, for some $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$. In this case m_{P} is written m_{f} and referred to as the bounded minimalization of f.

A slide from lecture 13

Theorem 10.12.

If P is a primitive recursive $(n+1)$-place predicate, its bounded minimalization m_{P} is a primitive recursive function.

Proof. . .

A slide from lecture 13
Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

$$
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\begin{aligned}
& q_{0} \triangle 1^{x_{1}} \Delta 1^{x_{2}} \Delta \cdots \Delta 1^{x_{n}} \Delta \cdots \\
& \vdash \\
& q_{\ldots} \Delta 1^{x_{1}} \Delta 1^{x_{2}} \Delta \cdots \Delta 1^{x_{n}} \Delta \cdots \\
& \vdash \\
& \vdash \\
& h_{a} \triangle 1^{f(X)} \triangle \cdots \\
& f(X)
\end{aligned}
$$

$$
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

A slide from lecture 14

We must show that $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\operatorname{Result}_{T}\left(f_{T}\left(\operatorname{InitConfig}^{(n)}(X)\right)\right)
$$

is μ-recursive.

Step 2

The predicate IsConfig $_{T}$ defined by
IsConfig $_{T}(m)=(m$ is configuration number for $T)$

A slide from lecture 14

Now different numbering

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be Turing machine

States: | h_{a} | h_{r} | q_{0} | \ldots | . |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | \ldots | s_{T} | with $s_{T}=|Q|+1$

Tape symbols: | Δ | \ldots | . |
| :---: | :---: | :---: |
| 0 | \ldots | $t s_{T}$ | with $t s_{T}=|\Gamma|$

$$
\begin{aligned}
\text { tapenumber }(\Delta 1 a \Delta b 1 \Delta) & =2^{0} 3^{1} 5^{2} 7^{0} 11^{3} 13^{1} 17^{0} \ldots \\
\text { confignumber } & =2^{q} 3^{P} 5^{\text {tapenumber }}
\end{aligned}
$$

Step 2 (continued)

The function IsAccepting $_{T}$ defined by
IsAccepting $_{T}(m)= \begin{cases}0 & \text { if } m \text { represents accepting config. of } T \\ 1 & \text { otherwise }\end{cases}$

Step 2 (continued)

The function IsAccepting $_{T}$ defined by
$\operatorname{IsAccepting}_{T}(m)= \begin{cases}0 & \text { if }^{\left(I s C o n f i g_{T}\right.}(m) \wedge \operatorname{Exponent}(0, m)=0 \\ 1 & \text { otherwise }\end{cases}$

Step 3

The function Result $_{T}$...

Step 3

The function Result $_{T}$

Result $_{T}(m)= \begin{cases}\left.\operatorname{HighestPrime}^{(E x p o n e n t}(2, m)\right) & \text { if IsConfig } \\ 0 & \text { otherwise }\end{cases}$

Exercise 10.22.

Show that the function HighestPrime introduced in Section 10.4 is primitive recursive.

$$
\operatorname{HighestPrime}(k)= \begin{cases}0 & \text { if } k \leq 1 \\ \max \{i \mid \operatorname{Exponent}(i, k)>0\} & \text { if } k \geq 2\end{cases}
$$

An exercise from exercise class 12

Exercise 10.23.

In addition to the bounded minimalization of a predicate, we might define the bounded maximalization of a predicate P to be the function m^{P} defined by
$m^{P}(X, k)= \begin{cases}\max \{y \leq k \mid P(x, y) \text { is true }\} & \text { if this set is not empty } \\ 0 & \text { otherwise }\end{cases}$
a. Show m^{P} is primitive recursive by finding two primitive recursive functions from which it can be obtained by primitive recursion.
b. Show m^{P} is primitive recursive by using bounded minimalization.

Step 4

```
    State(m) = Exponent(0,m)
    Posn(m) = Exponent(1,m)
TapeNumber(m) = Exponent(2,m)
    Symbol(m) = Exponent(Posn(m),TapeNumber(m))
```

Step 4

$$
\begin{aligned}
\text { NewState }(m) & =\ldots \\
\operatorname{NewSymbol}(m) & =\ldots \\
\text { NewPosn }(m) & =\ldots \\
\text { NewTapeNumber }(m) & =\ldots
\end{aligned}
$$

Exercise 10.35.

Show that the function NewTapeNumber discussed in Section 10.4 is primitive recursive.

Suggestion: Determine the prime factor of TapeNumber (m) that may change by a move of the Turing machine, when the tape head is at position Posn (m).

Step 5

The function Move $_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by
Move $_{T}(m)=\left\{\begin{array}{l}g n(\operatorname{NewState}(m), \operatorname{NewPosn}(m), \operatorname{NewTapeNumber}(m)) \\ \text { if } \operatorname{IsConfig}_{T}(m) \\ \text { otherwise }\end{array}\right.$

Step 6

The function Moves $_{T}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
\operatorname{Moves}_{T}(m, 0) & = \begin{cases}m & \text { if IsConfig } \\
\text { (} & (m) \\
0 & \text { otherwise }\end{cases} \\
\text { Moves }_{T}(m, k+1) & = \begin{cases}\text { Move }_{T}\left(\text { Moves }_{T}(m, k)\right) & \text { if IsConfig } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Step 7

The function NumberOfMovesToAccept ${ }_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by NumberOfMovesToAccept ${ }_{T}(m)=$
$\mu y\left[\operatorname{IsAccepting}_{T}\left(\operatorname{Moves}_{T}(m, y)\right)=0\right]$

Step 7

The function NumberOfMovesToAccept ${ }_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
& \text { NumberOfMovesToAccept }_{T}(m)= \\
& \qquad \mu y\left[\operatorname{IsAccepting}_{T}\left(\operatorname{Moves}_{T}(m, y)\right)=0\right]
\end{aligned}
$$

The function $f_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f_{T}(m)=\text { Moves }_{T}\left(m, \text { NumberOfMovesToAccept } T_{T}(m)\right)
$$

A slide from lecture 14

We must show that $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\operatorname{Result}_{T}\left(f_{T}\left(\operatorname{InitConfig}^{(n)}(X)\right)\right)
$$

is μ-recursive.

Theorem 10.20.

Every Turing computable partial function from \mathbb{N}^{n} to \mathbb{N} is μ-recursive.

The Rest of the Proof. . .

A slide from lecture 13
Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

10.5. Other Approaches to Computability

Computer programs vs. Turing machines

Computer programs vs. μ-recursive functions

Let

- $G=(V, \Sigma, S, P)$ be unrestricted grammar
- f be partial function from Σ^{*} to Σ^{*}

Then G is said to compute f, if there are $A, B, C, D \in V$, such that for every x and y in Σ^{*}

$$
f(x)=y \text { if and only if } A x B \Rightarrow^{*} C y D
$$

This definition (and simple examples of it) must be known for the exam

Exercise.

Describe an unrestricted grammar that computes the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=2^{n}$.

Both the input n and the answer 2^{n} are unary numbers.

En verder...

Tentamen: vrijdag 5 juni 2015, 14:00-17:00

Vragenuur...?

