Fundamentele Informatica 3

voorjaar 2015
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 14, 18 mei 2015
10. Computable Functions
10.3. Gödel Numbering
10.4. All Computable Functions are μ-Recursive

A slide from lecture 13

Definition 10.11. Bounded Minimalization
For an $(n+1)$-place predicate P, the bounded minimalization of P is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$
The symbol μ is often used for the minimalization operator, and we sometimes write

$$
m_{P}(X, k)=\stackrel{k}{\mu} y[P(X, y)]
$$

An important special case is that in which $P(X, y)$ is $(f(X, y)=0)$, for some $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$. In this case m_{P} is written m_{f} and referred to as the bounded minimalization of f.

A slide from lecture 13

Theorem 10.12.

If P is a primitive recursive $(n+1)$-place predicate, its bounded minimalization m_{P} is a primitive recursive function.

Proof. . .

A slide from lecture 13

Example 10.13. The nth Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Prime}(n)=(n \geq 2) \wedge \neg(\text { there exists } y \text { such that } \\
& y \geq 2 \wedge y \leq n-1 \wedge \operatorname{Mod}(n, y)=0)
\end{aligned}
$$

A slide from lecture 13

Example 10.13. The nth Prime Number

Let

$$
P(x, y)=(y>x \wedge \operatorname{Prime}(y))
$$

Then $m_{P}(x, k) \ldots$
and

$$
\begin{aligned}
\operatorname{PrNo}(0) & =2 \\
\operatorname{PrNo}(k+1) & =m_{P}(\operatorname{PrNo}(k),(\operatorname{PrNo}(k))!+1)
\end{aligned}
$$

is primitive recursive, with $h\left(x_{1}, x_{2}\right)=\ldots$

A slide from lecture 13

Definition 10.14. Unbounded Minimalization

If P is an $(n+1)$-place predicate, the unbounded minimalization of P is the partial function $M_{P}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{P}(X)=\min \{y \mid P(X, y) \text { is true }\}
$$

$M_{P}(X)$ is undefined at any $X \in \mathbb{N}^{n}$ for which there is no y satisfying $P(X, y)$.

The notation $\mu y[P(X, y)]$ is also used for $M_{P}(X)$.
In the special case in which $P(X, y)=(f(X, y)=0)$, we write $M_{P}=M_{f}$ and refer to this function as the unbounded minimalization of f.

A slide from lecture 13
Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

A slide from lecture 13

Theorem 10.16.

All μ-recursive partial functions are computable.

Proof. . .

A slide from lecture 13

Definition 10.17.
The Gödel Number of a Sequence of Natural Numbers
For every $n \geq 1$ and every finite sequence $x_{0}, x_{1}, \ldots, x_{n-1}$ of n natural numbers, the Gödel number of the sequence is the number

$$
g n\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=2^{x_{0}} 3^{x_{1}} 5^{x_{2}} \ldots(\operatorname{PrNo}(n-1))^{x_{n-1}}
$$

where $\operatorname{PrNo}(i)$ is the i th prime (Example 10.13).

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x
Function Exponent: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined as follows:
Exponent $(i, x)= \begin{cases}\text { the exp. of } \operatorname{PrNo}(i) \text { in } x \text { 's prime fact. } & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Theorem 10.19.

Suppose that $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ are primitive recursive functions, and $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is obtained from g and h by course-of-values recursion; that is

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, \operatorname{gn}(f(X, 0), \ldots, f(X, k)))
\end{aligned}
$$

Then f is primitive recursive.

Proof. . .

Example.

Fibonacci

$$
f(n)=\left\{\begin{aligned}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
f(n-1)+f(n-2) & \text { if } n \geq 2
\end{aligned}\right.
$$

Configuration of Turing machine determined by

- state
- position on tape
- tape contents

A slide from lecture 4:

Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet Γ of every Turing machine T is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

A slide from lecture 4:

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

Now different numbering

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be Turing machine

States: | h_{a} | h_{r} | q_{0} | \ldots | . |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | \ldots | s_{T} | with $s_{T}=\ldots$

Tape symbols: | Δ | \ldots | . |
| :---: | :---: | :---: |
| 0 | \ldots | $t s_{T}$ | with $t s_{T}=\ldots$

Now different numbering

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be Turing machine

States: | h_{a} | h_{r} | q_{0} | \ldots | . |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | \ldots | s_{T} | with $s_{T}=|Q|+1$

Tape symbols: | Δ | \ldots | . |
| :---: | :---: | :---: |
| | 而 | \ldots | with $t s_{T}=|\Gamma|$

$$
\begin{aligned}
\text { tapenumber }(\Delta 1 a \Delta b 1 \Delta) & =2^{0} 3^{1} 5^{2} 7^{0} 11^{3} 13^{1} 17^{0} \ldots \\
\text { confignumber } & =2^{q} 3^{P} 5^{\text {tapenumber }}
\end{aligned}
$$

10.4. All Computable Functions are μ-Recursive

We must show that $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\operatorname{Result}_{T}\left(f_{T}\left(\operatorname{Init}^{\text {Config }}(n)(X)\right)\right)
$$

is μ-recursive.

Step 1

The function InitConfig ${ }^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$

Exercise 10.34.

Show using mathematical induction that if $\operatorname{tn}^{(n)}\left(x_{1}, \ldots, x_{n}\right)$ is the tape number containing the string

$$
\Delta 1^{x_{1}} \Delta 1^{x_{2}} \Delta \ldots \Delta 1^{x_{n}}
$$

then $t n^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is primitive recursive.

Use $\operatorname{nr}(\Delta)=0$ and $\operatorname{nr}(1)=1$.

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Exercise 10.34.

Show using mathematical induction that if $\operatorname{tn}^{(n)}\left(x_{1}, \ldots, x_{n}\right)$ is the tape number containing the string

$$
\Delta 1^{x_{1}} \Delta 1^{x_{2}} \Delta \ldots \Delta 1^{x_{n}}
$$

then $t n^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is primitive recursive.
Suggestion: In the induction step, show that

$$
t n^{(m+1)}\left(X, x_{m+1}\right)=\operatorname{tn}^{(m)}(X) * \prod_{j=1}^{x_{m+1}} \operatorname{PrNo}\left(m+\sum_{i=1}^{m} x_{i}+j\right)
$$

Use $\operatorname{nr}(\Delta)=0$ and $\operatorname{nr}(1)=1$.

