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10. Computable Functions

10.3. Godel Numbering
10.4. All Computable Functions are p-Recursive


http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

A slide from lecture 13
Definition 10.11. Bounded Minimalization

For an (n—+ 1)-place predicate P, the bounded minimalization of
P is the function mp : N*T1 — N defined by

(X. k) = min{y | 0 <y <k and P(X,y)} if this set is not empty
MPAR) = k41 otherwise

The symbol u is often used for the minimalization operator, and
we sometimes write

mp(X, k) = b y[P(X,y)]

An important special case is that in which P(X,y) is (f(X,y) = 0),
for some f : N*T1 5 N. In this case mp is written m and referred
to as the bounded minimalization of f.



A slide from lecture 13
Theorem 10.12.

If P is a primitive recursive (n 4+ 1)-place predicate,
its bounded minimalization mp is a primitive recursive function.

Proof. ..



A slide from lecture 13

Example 10.13. The nth Prime Number

PrNo(0) = 2
PrNo(1) = 3
PrNo(2) =5
Prime(n) = (n > 2) A —(there exists y such that

y>2ANy<n-—1AMod(n,y) =0)



A slide from lecture 13
Example 10.13. The nth Prime Number

Let

P(x,y) = (y >z A Prime(y))
Then mp(xz, k) ...
and

PrNo(0)
PrNo(k + 1)

2
mp(PrNo(k),(PrNo(k))!+ 1)

is primitive recursive, with h(xzq,25) = ...



A slide from lecture 13
Definition 10.14. Unbounded Minimalization

If Pis an (n+4 1)-place predicate, the unbounded minimalization
of P is the partial function Mp : N* — N defined by

Mp(X) =min{y | P(X,y) is true}

Mp(X) is undefined at any X € N™ for which there is no y satis-
fying P(X,y).

The notation py[P(X,y)] is also used for Mp(X).

In the special case in which P(X,y) = (f(X,y) = 0), we write
Mp = My and refer to this function as the unbounded minimal-
ization of f.



A slide from lecture 13
Definition 10.15. pu-Recursive Functions

The set M of u-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n > 0 and every total function f:N*T1 5 N in M,
the function M, : N — N defined by

M (X) = pylf(X,y) = 0]
is an element of M.



A slide from lecture 13

Theorem 10.16.

All p-recursive partial functions are computable.

Proof. ..



A slide from lecture 13

Definition 10.17.
The Godel Number of a Sequence of Natural Numbers

For every n > 1 and every finite sequence xg,x1,...,x,_1 Of
n natural numbers, the Godel number of the sequence is the
number

QN(QZ(), L1y.-- 7wn—1) = 2%ogTrigr2 (PI'NO(TL — 1))3371—1
where PrNo(i) is the ith prime (Example 10.13).



Example 10.18.
The Power to Which a Prime is Raised in the Factorization of x

Function Exponent : N2 — N defined as follows:

the exp. of PrNo(i) in z's prime fact. if x >0

Exponent(i,xz) = { 0 =0
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A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.
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Theorem 10.19.

Suppose that g : N* - N and h: N"*t2 3 N are primitive recursive
functions, and f : N7+l _ N is obtained from g and h by course-
of-values recursion; that is

f(X,0) = g(X)
f(X,k+1) h(X,k,gn(f(X,0),..., f(X,k)))

Then f is primitive recursive.

Proof. ..
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Example.

Fibonacci

f(n) ={

O
1

fn—=1) 4+ f(n—2)

ifn=20
ifn=1
ifn>2
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Configuration of Turing machine determined by

e State

e poOsition on tape

e tape contents
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A slide from lecture 4:
Assumptions:
1. Names of the states are irrelevant.

2. Tape alphabet ' of every Turing machine 7' is subset
of infinite set S = {a1,a2,a3,...}, where a1 = A.
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A slide from lecture 4:
Definition 7.33. An Encoding Function

Assign numbers to each state:
n(he) = 1, n(hy) = 2, n(qp) = 3, n(q) > 4 for other q € Q.

Assign numbers to each tape symbol:

n(a;) = 1.

Assign numbers to each tape head direction:
n(R) =1, n(L) =2, n(S) = 3.
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Now different numbering

Let T'= (Q, >, I, qp,6) be Turing machine

. ha | hr qd0 . . .
States: 01115 57 with sp = ...
Tape symbols: A —— with tsr =

P \ : 0 tST T = ...

17



Now different numbering

Let T = (Q,2>,I,qp,6) be Turing machine

States: 0112 . s with s = |Q| 4+ 1
Tape symbols: Ale] with tsp = ||
P Y ' O |... tST T =
tapenumber(AlaAblA) = 20315270113131170

2q3P5tapenumber

confignumber
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10.4. AIll Computable Functions
are u-Recursive
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We must show that f : N" — N defined by

f(X) = Resulty( fr(InitConfig{™ (X)))

IS u-recursive.
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Step 1

The function InitConfig(”) : N"” — N
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Exercise 10.34.

Show using mathematical induction that if tn(™) (zq,...,2n) is
the tape number containing the string

ATTIATI2A .. A1

then tn(") : N — N is primitive recursive.

Use nr(A) =0 and nr(l1) = 1.

22



A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.
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Exercise 10.34.

Show using mathematical induction that if tn(™ (zq,...,z,) is
the tape number containing the string

ATTIAITA ... A1
then tn(™ : N? 5 N is primitive recursive.
Suggestion: In the induction step, show that

ITm41
tn(m+1)(X7 Topt1) = tn(m)(X) * H PrNo(m + > 1 x; + 7)
j=1

Use nr(A) =0 and nr(1) = 1.
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