
Fundamentele Informatica 3

voorjaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 14, 18 mei 2015

10. Computable Functions

10.3. Gödel Numbering

10.4. All Computable Functions are µ-Recursive

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

A slide from lecture 13

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .

2

A slide from lecture 13

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .

3

A slide from lecture 13

Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

Prime(n) = (n ≥ 2) ∧ ¬(there exists y such that

y ≥ 2 ∧ y ≤ n− 1 ∧Mod(n, y) = 0)

4

A slide from lecture 13

Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then mP (x, k) . . .

and

PrNo(0) = 2

PrNo(k +1) = mP (PrNo(k), (PrNo(k))! + 1)

is primitive recursive, with h(x1, x2) = . . .

5

A slide from lecture 13

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).

The notation µ y[P (X, y)] is also used for MP (X).

In the special case in which P (X, y) = (f(X, y) = 0), we write

MP = Mf and refer to this function as the unbounded minimal-

ization of f .

6

A slide from lecture 13

Definition 10.15. µ-Recursive Functions

The set M of µ-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n ≥ 0 and every total function f : Nn+1 → N in M,
the function Mf : Nn → N defined by

Mf(X) = µ y[f(X, y) = 0]

is an element of M.

7

A slide from lecture 13

Theorem 10.16.

All µ-recursive partial functions are computable.

Proof. . .

8

A slide from lecture 13

Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every n ≥ 1 and every finite sequence x0, x1, . . . , xn−1 of

n natural numbers, the Gödel number of the sequence is the

number

gn(x0, x1, . . . , xn−1) = 2x03x15x2 . . . (PrNo(n− 1))xn−1

where PrNo(i) is the ith prime (Example 10.13).

9

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x

Function Exponent : N2 → N defined as follows:

Exponent(i, x) =

{

the exp. of PrNo(i) in x’s prime fact. if x > 0
0 if x = 0

10

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

11

Theorem 10.19.

Suppose that g : Nn → N and h : Nn+2 → N are primitive recursive

functions, and f : Nn+1 → N is obtained from g and h by course-

of-values recursion; that is

f(X,0) = g(X)

f(X, k +1) = h(X, k,gn(f(X,0), . . . , f(X, k)))

Then f is primitive recursive.

Proof. . .

12

Example.

Fibonacci

f(n) =

0 if n = 0
1 if n = 1

f(n− 1) + f(n− 2) if n ≥ 2

13

Configuration of Turing machine determined by

• state

• position on tape

• tape contents

14

A slide from lecture 4:

Assumptions:

1. Names of the states are irrelevant.

2. Tape alphabet Γ of every Turing machine T is subset

of infinite set S = {a1, a2, a3, . . .}, where a1 = ∆.

15

A slide from lecture 4:

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

16

Now different numbering

Let T = (Q,Σ,Γ, q0, δ) be Turing machine

States:
ha hr q0

0 1 2 . . . sT
with sT = . . .

Tape symbols:
∆

0 . . . tsT
with tsT = . . .

17

Now different numbering

Let T = (Q,Σ,Γ, q0, δ) be Turing machine

States:
ha hr q0

0 1 2 . . . sT
with sT = |Q|+1

Tape symbols:
∆

0 . . . tsT
with tsT = |Γ|

tapenumber(∆1a∆b1∆) = 20315270113131170 . . .

confignumber = 2q3P5tapenumber

18

10.4. All Computable Functions
are µ-Recursive

19

We must show that f : Nn → N defined by

f(X) = ResultT (fT (InitConfig(n)(X)))

is µ-recursive.

20

Step 1

The function InitConfig(n) : Nn → N

21

Exercise 10.34.

Show using mathematical induction that if tn(n)(x1, . . . , xn) is

the tape number containing the string

∆1x1∆1x2∆ . . .∆1xn

then tn(n) : Nn → N is primitive recursive.

Use nr(∆) = 0 and nr(1) = 1.

22

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

23

Exercise 10.34.

Show using mathematical induction that if tn(n)(x1, . . . , xn) is

the tape number containing the string

∆1x1∆1x2∆ . . .∆1xn

then tn(n) : Nn → N is primitive recursive.

Suggestion: In the induction step, show that

tn(m+1)(X,xm+1) = tn(m)(X) ∗

xm+1
∏

j=1

PrNo(m+
∑m

i=1 xi + j)

Use nr(∆) = 0 and nr(1) = 1.

24

