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A slide from lecture 11:

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi
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A slide from lecture 11:

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m
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A slide from lecture 11:

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.
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A slide from lecture 12:

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .
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A slide from lecture 12:

Theorem 10.6.

The two-place predicates LT , EQ, GT , LE , GE , and NE are

primitive recursive.

(LT stands for “less than,” and the other five have similarly

intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then

P ∧Q, P ∨Q and ¬P are primitive recursive.

Proof. . .
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A slide from lecture 12:

Exercise.

Let f : Nn+1 → N be a primitive recursive function.

Show that the predicate P : Nn+1 → {true, false} defined by

P (X, y) = (f(X, y) = 0)

is primitive recursive.
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A slide from lecture 12:

Theorem 10.7.

Suppose f1, f2, . . . , fk are primitive recursive functions from N
n

to N,
P1, P2, . . . , Pk are primitive recursive n-place predicates,
and for every X ∈ N

n,
exactly one of the conditions P1(X), P2(X), . . . , Pk(X) is true.

Then the function f : Nn → N defined by

f(X) =



















f1(X) if P1(X) is true
f2(X) if P2(X) is true
. . .

fk(X) if Pk(X) is true

is primitive recursive.

Proof. . .
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10.2. Quantification, Minimalization, and
µ-Recursive Functions
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total
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(Un)bounded quantification

Sq(x, y) = (y2 = x)

PerfectSquare(x) = there exists y such that y2 = x
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(Un)bounded quantification

Sq(x, y) = (y2 = x)

PerfectSquare(x) = there exists y such that y2 = x

ESq(x, k) = there exists y ≤ k such that y2 = x
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(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx
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(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx
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(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx

EH(x, k) = there exists y ≤ k such that

Tu halts after exactly y moves on input sx
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Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential

quantification of P is the (n+1)-place predicate EP defined by

EP (X, k) = (there exists y with 0 ≤ y ≤ k such that P (X, y) is true)

The bounded universal quantification of P is the (n + 1)-place

predicate AP defined by

AP (X, k) = (for every y satifying 0 ≤ y ≤ k, P (X, y) is true)
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Theorem 10.10.

If P is a primitive recursive (n+1)-place predicate,

both the predicates EP and AP are also primitive recursive.

Proof. . .
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total
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Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mp : Nn+1 → N defined by

mp(X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise
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Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .
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Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .

22



Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5
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Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

Prime(n) = (n ≥ 2) ∧ ¬(there exists y such that

y ≥ 2 ∧ y ≤ n− 1 ∧Mod(n, y) = 0)
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Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then mP (x, k) . . .

and

PrNo(0) = 2

PrNo(k +1) = mP (PrNo(k), (PrNo(k))! + 1)

is primitive recursive, with h(x1, x2) = . . .

25



A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total
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Unbounded minimalization

Total?
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Unbounded minimalization

Total?

A possible definition:

M(X) =

{

(min{y | P (X, y) is true}) + 1 if this set is not empty
0 otherwise

Computable?
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(Un)bounded quantification

H(x, y) = Tu halts after exactly y moves on input sx

Halts(x) = there exists y such that

Tu halts after exactly y moves on input sx
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Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).
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Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).

The notation µ y[P (X, y)] is also used for MP (X).

In the special case in which P (X, y) = (f(X, y) = 0), we write

MP = Mf and refer to this function as the unbounded minimal-

ization of f .
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Definition 10.15. µ-Recursive Functions

The set M of µ-recursive, or simply recursive, partial functions

is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition

or primitive recursion is an element of M.

3. For every n ≥ 0 and every total function f : Nn+1 → N in M,

the function Mf : Nn → N defined by

Mf(X) = µ y[f(X, y) = 0]

is an element of M.
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Example.

Let

f(x, k) = p21(x, k)
.
− C2

1(x, k)

Mf(x) . . .
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Exercise.

a. Give an example of a non-total function f and another func-

tion g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and

another function g, such that the composition of g and f is total?
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Theorem 10.16.

All µ-recursive partial functions are computable.

Proof. . .
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10.3. Gödel Numbering
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Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every n ≥ 1 and every finite sequence x0, x1, . . . , xn−1 of

n natural numbers, the Gödel number of the sequence is the

number

gn(x0, x1, . . . , xn−1) = 2x03x15x2 . . . (PrNo(n− 1))xn−1

where PrNo(i) is the ith prime (Example 10.13).
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An exercise from exercise class 11:

Exercise 10.16.

Show that for any n ≥ 1, the functions Addn and Multn from N
n

to N, defined by

Addn(x1, . . . , xn) = x1 + x2 + · · ·+ xn

Multn(x1, . . . , xn) = x1 ∗ x2 ∗ · · · ∗ xn

respectively, are both primitive recursive.
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