Fundamentele Informatica 3

voorjaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 13, 11 mei 2015

10. Computable Functions 10.2. Quantification, Minimalization, and μ -Recursive Functions

Huiswerkopgave 3, inleverdatum 12 mei 2015, 13:45 uur

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \ge 0$ and each $a \ge 0$, the constant function $C_a^k : \mathbb{N}^k \to \mathbb{N}$ is defined by the formula

$$C_a^k(X) = a$$
 for every $X \in \mathbb{N}^k$

2. The successor function $s: \mathbb{N} \to \mathbb{N}$ is defined by the formula

$$s(x) = x + 1$$

3. Projection functions: For each $k\geq 1$ and each i with $1\leq i\leq k,$ the projection function $p_i^k:\mathbb{N}^k\to\mathbb{N}$ is defined by the formula

$$p_i^k(x_1, x_2, \dots, x_k) = x_i$$

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^k to \mathbb{N} , and for each i with $1 \leq i \leq k$, g_i is a partial function from \mathbb{N}^m to \mathbb{N} . The partial function obtained from f and g_1, g_2, \ldots, g_k by composition is the partial function h from \mathbb{N}^m to \mathbb{N} defined by the formula

$$h(X) = f(g_1(X), g_2(X), \dots, g_k(X))$$
 for every $X \in \mathbb{N}^m$

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)

2. Suppose $n \ge 0$ and g and h are functions of n and n + 2 variables, respectively. (By "a function of 0 variables," we mean simply a constant.)

The function obtained from g and h by the operation of *primitive recursion* is the function $f: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by the formulas

$$f(X,0) = g(X)$$

$$f(X,k+1) = h(X,k,f(X,k))$$

for every $X \in \mathbb{N}^n$ and every $k \ge 0$.

n-place predicate P is function from \mathbb{N}^n to {true, false}

characteristic function χ_P defined by

$$\chi_P(X) = \begin{cases} 1 & \text{if } P(X) \text{ is true} \\ 0 & \text{if } P(X) \text{ is false} \end{cases}$$

We say P is primitive recursive...

Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, GE, and NE are primitive recursive.

 $(LT \text{ stands for "less than," and the other five have similarly intuitive abbreviations.)$

If P and Q are any primitive recursive n-place predicates, then $P \wedge Q$, $P \vee Q$ and $\neg P$ are primitive recursive.

Proof...

Exercise.

Let $f : \mathbb{N}^{n+1} \to \mathbb{N}$ be a primitive recursive function.

Show that the predicate $P : \mathbb{N}^{n+1} \rightarrow {\text{true}, \text{false}}$ defined by

$$P(X, y) = (f(X, y) = 0)$$

is primitive recursive.

Theorem 10.7.

Suppose f_1, f_2, \ldots, f_k are primitive recursive functions from \mathbb{N}^n to \mathbb{N} ,

 P_1, P_2, \ldots, P_k are primitive recursive *n*-place predicates, and for every $X \in \mathbb{N}^n$,

exactly one of the conditions $P_1(X), P_2(X), \ldots, P_k(X)$ is true. Then the function $f : \mathbb{N}^n \to \mathbb{N}$ defined by

$$f(X) = \begin{cases} f_1(X) & \text{if } P_1(X) \text{ is true} \\ f_2(X) & \text{if } P_2(X) \text{ is true} \\ \\ \dots \\ f_k(X) & \text{if } P_k(X) \text{ is true} \end{cases}$$

is primitive recursive.

Proof...

10.2. Quantification, Minimalization, and μ -Recursive Functions

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

$$Sq(x,y) = (y^2 = x)$$

PerfectSquare(x) = there exists y such that $y^2 = x$

 $Sq(x,y) = (y^2 = x)$

PerfectSquare(x) = there exists y such that $y^2 = x$

 $E_{Sq}(x,k) =$ there exists $y \leq k$ such that $y^2 = x$

 $H(x,y) = T_u$ halts after exactly y moves on input s_x

 $H(x,y) = T_u$ halts after exactly y moves on input s_x

Halts(x) = there exists y such that T_u halts after exactly y moves on input s_x

 $H(x,y) = T_u$ halts after exactly y moves on input s_x

Halts(x) = there exists y such that T_u halts after exactly y moves on input s_x

 $E_H(x,k) =$ there exists $y \le k$ such that T_u halts after exactly y moves on input s_x

Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential quantification of P is the (n + 1)-place predicate E_P defined by

 $E_P(X,k) = (\text{there exists } y \text{ with } 0 \le y \le k \text{ such that } P(X,y) \text{ is true})$ The bounded universal quantification of P is the (n + 1)-place predicate A_P defined by

 $A_P(X,k) = (\text{for every } y \text{ satisfying } 0 \le y \le k, P(X,y) \text{ is true})$

Theorem 10.10.

If P is a primitive recursive (n + 1)-place predicate, both the predicates E_P and A_P are also primitive recursive.

Proof...

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_p : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

 $m_p(X,k) = \begin{cases} \min\{y \mid 0 \le y \le k \text{ and } P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{cases}$

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_P : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

$$m_P(X,k) = \begin{cases} \min\{y \mid 0 \le y \le k \text{ and } P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{cases}$$

The symbol μ is often used for the minimalization operator, and we sometimes write

$$m_P(X,k) = \overset{k}{\mu} y[P(X,y)]$$

An important special case is that in which P(X, y) is (f(X, y) = 0), for some $f : \mathbb{N}^{n+1} \to \mathbb{N}$. In this case m_P is written m_f and referred to as the bounded minimalization of f.

Theorem 10.12.

If P is a primitive recursive (n + 1)-place predicate, its bounded minimalization m_P is a primitive recursive function.

Proof...

Example 10.13. The *n*th Prime Number

$$PrNo(0) = 2$$
$$PrNo(1) = 3$$
$$PrNo(2) = 5$$

Example 10.13. The *n*th Prime Number

PrNo(0) = 2PrNo(1) = 3PrNo(2) = 5

 $\begin{aligned} \text{Prime}(n) &= (n \geq 2) \land \neg(\text{there exists } y \text{ such that} \\ y \geq 2 \land y \leq n - 1 \land \textit{Mod}(n, y) = 0) \end{aligned}$

Example 10.13. The *n*th Prime Number

Let

$$P(x,y) = (y > x \land Prime(y))$$

Then $m_P(x,k)$... and

$$PrNo(0) = 2$$

$$PrNo(k+1) = m_P(PrNo(k), (PrNo(k))! + 1)$$

is primitive recursive, with $h(x_1, x_2) = \dots$

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

Unbounded minimalization

Total?

Unbounded minimalization

Total?

A possible definition:

$$M(X) = \begin{cases} (\min\{y \mid P(X,y) \text{ is true}\}) + 1 & \text{if this set is not empty} \\ 0 & \text{otherwise} \end{cases}$$

Computable?

 $H(x,y) = T_u$ halts after exactly y moves on input s_x

Halts(x) = there exists y such that T_u halts after exactly y moves on input s_x Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization of P is the partial function $M_P : \mathbb{N}^n \to \mathbb{N}$ defined by

 $M_P(X) = \min\{y \mid P(X, y) \text{ is true}\}$

 $M_P(X)$ is undefined at any $X \in \mathbb{N}^n$ for which there is no y satisfying P(X, y).

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization of P is the partial function $M_P : \mathbb{N}^n \to \mathbb{N}$ defined by

 $M_P(X) = \min\{y \mid P(X, y) \text{ is true}\}$

 $M_P(X)$ is undefined at any $X \in \mathbb{N}^n$ for which there is no y satisfying P(X, y).

The notation $\mu y[P(X,y)]$ is also used for $M_P(X)$. In the special case in which P(X,y) = (f(X,y) = 0), we write $M_P = M_f$ and refer to this function as the unbounded minimalization of f.

Definition 10.15. μ -Recursive Functions

The set \mathcal{M} of μ -recursive, or simply *recursive*, partial functions is defined as follows.

- 1. Every initial function is an element of \mathcal{M} .
- 2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M} .
- 3. For every $n \ge 0$ and every total function $f : \mathbb{N}^{n+1} \to \mathbb{N}$ in \mathcal{M} , the function $M_f : \mathbb{N}^n \to \mathbb{N}$ defined by

$$M_f(X) = \mu y[f(X, y) = 0]$$

is an element of \mathcal{M} .

Example.

Let

$$f(x,k) = p_1^2(x,k) - C_1^2(x,k)$$

 $M_f(x)$...

Exercise.

a. Give an example of a non-total function f and another function g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and another function g, such that the composition of g and f is total?

Theorem 10.16.

All μ -recursive partial functions are computable.

Proof...

10.3. Gödel Numbering

Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every $n \ge 1$ and every finite sequence $x_0, x_1, \ldots, x_{n-1}$ of n natural numbers, the *Gödel number* of the sequence is the number

$$gn(x_0, x_1, \dots, x_{n-1}) = 2^{x_0} 3^{x_1} 5^{x_2} \dots (PrNo(n-1))^{x_{n-1}}$$

where PrNo(i) is the *i*th prime (Example 10.13).

An exercise from exercise class 11:

Exercise 10.16.

Show that for any $n \ge 1$, the functions Add_n and $Mult_n$ from \mathbb{N}^n to \mathbb{N} , defined by

$$Add_n(x_1, ..., x_n) = x_1 + x_2 + \dots + x_n$$

 $Mult_n(x_1, ..., x_n) = x_1 * x_2 * \dots * x_n$

respectively, are both primitive recursive.