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A slide from lecture 11:
Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each £ > 0 and each a > 0, the
constant function CZ,? ' N¥ 5 N is defined by the formula

CH(X)=a for every X € NF

2. The successor function s: N — N is defined by the formula

s(z)=z+1

3. Projection functions: For each kK > 1 and each ¢ with 1 <
i < k, the projection function p¥ : N¥ — N is defined by the
formula

pF(x,xo,...,2) = 24



A slide from lecture 11:

Definition 10.2. The Operations of Composition and Primitive
Recursion

1. Suppose f is a partial function from N* to N, and for each 2
with 1 <4 <k, g; is a partial function from N to N.
The partial function obtained from f and gi1,92,...,9r by
composition is the partial function A from N to N defined
by the formula

h(X) = f(g1(X),92(X),...,9.(X)) for every X € N



A slide from lecture 11:

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.



A slide from lecture 12:
n-place predicate P is function from N™ to {true, false}

characteristic function xp defined by

|1 if P(X) is true
xp(X) = { 0 if P(X) is false

We say P is primitive recursive. . .



A slide from lecture 12:
Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, GE, and NE are
primitive recursive.

(LT stands for “less than,” and the other five have similarly
intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then
PAQ, PV (Q and =P are primitive recursive.

Proof...



A slide from lecture 12:

EXercise.

Let f:N?T1 5 N be a primitive recursive function.

Show that the predicate P : N*T1 — {true, false} defined by

P(X,y) = (f(X,y) =0)

IS primitive recursive.



A slide from lecture 12:

Theorem 10.7.

Suppose fq, fo,..., fi are primitive recursive functions from N"
to N,
Py, P>, ..., P are primitive recursive n-place predicates,

and for every X € N,
exactly one of the conditions P1(X), Po(X),..., P.(X) is true.
Then the function f: N" — N defined by

( f1(X) if P1(X) is true

f(X) =« fo(X) if Po(X) is true

\ fk(X> if Pk(X> is true
IS primitive recursive.

Proof. ..



10.2. Quantification, Minimalization, and
u-Recursive Functions
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
11



(Un)bounded quantification

Sq(z,y) = (y* ==)

PerfectSquare(z) = there exists y such that y2 =«
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(Un)bounded quantification
Sa(z,y) = (y* =)
PerfectSquare(z) = there exists y such that y2 =z

Esq(z,k) = there exists y < k such that y? ==
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(Un)bounded quantification

H(z,y) =

T, halts after exactly y moves on input sg
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(Un)bounded quantification

H(z,y) =

Halts(x) =

T, halts after exactly y moves on input sg

there exists y such that
T, halts after exactly y moves on input sy
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(Un)bounded quantification

H(z,y) =

Halts(x) =

EH(a:, k) —_

T, halts after exactly y moves on input s

there exists y such that
T, halts after exactly y moves on input sy

there exists y < k£ such that
T, halts after exactly y moves on input sy
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Definition 10.9. Bounded Quantifications
Let P be an (n + 1)-place predicate. The bounded existential
quantification of P is the (n + 1)-place predicate Ep defined by

Ep(X,k) = (there exists y with 0 <y < k such that P(X,y) is true)

The bounded universal quantification of P is the (n + 1)-place
predicate Ap defined by

Ap(X, k) = (for every y satifying 0 <y <k, P(X,y) is true)
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Theorem 10.10.

If P is a primitive recursive (n + 1)-place predicate,
both the predicates Ep and Ap are also primitive recursive.

Proof...
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
19



Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function m, : N*T1 — N defined by

(X, k) = min{y | 0 <y <k and P(X,y)} if this set is not empty
B R otherwise
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Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function mp : N*T1 N defined by

| min{fy| 0<y<kand P(X,y)} if this set is not empty
mp(X, k) = { k+1 otherwise

The symbol u is often used for the minimalization operator, and
we sometimes write

mp(X, k) = b y[P(X,y)]

An important special case is that in which P(X,vy) is (f(X,y) = 0),
for some f : N**1 5 N. In this case mp is written m and referred

to as the bounded minimalization of f.
21



Theorem 10.12.

If P is a primitive recursive (n + 1)-place predicate,
its bounded minimalization mp is a primitive recursive function.

Proof...
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Example 10.13. The nth Prime Number

PrNo(0) = 2
PrNo(1) = 3
PrNo(2) =5
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Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5
Prime(n)

(n > 2) A =(there exists y such that
y>2ANy<n-—1AMod(n,y) =0)
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Example 10.13. The nth Prime Number

et
P(x,y) = (y >z AN Prime(y))

Then mp(xz, k) ...
and

2
mp(PrNo(k), (PrNo(k))! + 1)

PrNo(0)
PrNo(k + 1)

is primitive recursive, with h(xq,22) = ...
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A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
26



Unbounded minimalization

Total?
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Unbounded minimalization
Total?

A possible definition:

M(X) = (min{y | P(X,y) is true}) + 1 if this set is not empty
B 0 otherwise

Computable?
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(Un)bounded quantification

H(z,y) =

Halts(x) =

T, halts after exactly y moves on input sg

there exists y such that
T, halts after exactly y moves on input sy
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Definition 10.14. Unbounded Minimalization
If P is an (n+ 1)-place predicate, the unbounded minimalization
of P is the partial function Mp : N® — N defined by

Mp(X) =min{y | P(X,y) is true}

Mp(X) is undefined at any X € N for which there is no y satis-
fying P(X,vy).
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Definition 10.14. Unbounded Minimalization

If Pis an (n+ 1)-place predicate, the unbounded minimalization
of P is the partial function Mp : N — N defined by

Mp(X) =min{y | P(X,y) is true}

Mp(X) is undefined at any X € N” for which there is no y satis-
fying P(X,vy).

The notation py[P(X,y)] is also used for Mp(X).

In the special case in which P(X,y) = (f(X,y) = 0), we write
Mp = My and refer to this function as the unbounded minimal-
ization of f.
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Definition 10.15. p-Recursive Functions

The set M of u-recursive, or simply recursive, partial functions
is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition
or primitive recursion is an element of M.

3. For every n > 0 and every total function f : N+l 5 N in M,
the function My : N — N defined by

M(X) = pylf(X,y) = 0]
is an element of M.
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Example.

Let

f(x, k) = p3(z, k) — C3(x, k)
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EXxercise.

a. Give an example of a non-total function f and another func-
tion g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and
another function g, such that the composition of g and f is total?
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Theorem 10.16.

All p-recursive partial functions are computable.

Proof...
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10.3. Godel Numbering
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Definition 10.17.
The Godel Number of a Sequence of Natural Numbers

For every n > 1 and every finite sequence xqg,zq1,...,x,_1 Of
n natural numbers, the Godel number of the sequence is the
number

gn(xg,z1,...,Tp_1) = 2703%15%2 _ (PrNo(n — 1))*n-1
where PrNo(i) is the ith prime (Example 10.13).
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An exercise from exercise class 11:
Exercise 10.16.

Show that for any n > 1, the functions Add,, and Mult, from N"
to N, defined by

Addn(z1,...,2n) x1+xo+ -+ zn
Multn(x1,...,2n) = T1*To*---*Tn

respectively, are both primitive recursive.
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