
Fundamentele Informatica 3

voorjaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 12, 4 mei 2015

10. Computable Functions

10.1. Primitive Recursive Functions

1

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Exercise 10.1.

Let F be the set of partial functions from N to N. Then F = C∪U ,

where the functions in C are computable and the ones in U are

not.

Show that C is countable and U is not.

2

Exercise 7.37.

Show that if there is TM T computing the function f : N → N,

then there is another one, T ′, whose tape alphabet is {1}.

3

Exercise 7.37.

Show that if there is TM T computing the function f : N → N,

then there is another one, T ′, whose tape alphabet is {1}.

Suggestion: Suppose T has tape alphabet Γ = {a1, a2, . . . , an}.

Encode ∆ and each of the ai’s by a string of 1’s and ∆’s of

length n+1 (for example, encode ∆ by n+1 blanks, and ai by

1i∆n+1−i). Have T ′ simulate T , but using blocks of n+ 1 tape

squares instead of single squares.

4

Exercise.

How many Turing machines are there having n nonhalting states

q0, q1, . . . , qn−1 and tape alphabet {0,1} ?

5

Exercise 10.2.

The busy-beaver function b : N → N is defined as follows.

The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines hav-

ing n nonhalting states q0, q1, . . . , qn−1 and tape alphabet {0,1}.

Let T0, T1, . . . , Tm be the TMs of this type that eventually halt

on input 1n, and for each i, let ni be the number of 1’s that

Ti leaves on its tape when it halts after processing the input

string 1n. The number b(n) is defined to be the maximum of

the numbers n0, n1, . . . , nm.

Show that the total function b : N → N is not computable.

6

Exercise 10.2.

The busy-beaver function b : N → N is defined as follows.

The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines hav-

ing n nonhalting states q0, q1, . . . , qn−1 and tape alphabet {0,1}.

Let T0, T1, . . . , Tm be the TMs of this type that eventually halt

on input 1n, and for each i, let ni be the number of 1’s that

Ti leaves on its tape when it halts after processing the input

string 1n. The number b(n) is defined to be the maximum of

the numbers n0, n1, . . . , nm.

Show that the total function b : N → N is not computable.

Suggestion: Suppose for the sake of contradiction that Tb is

a TM that computes b. Then we can assume without loss of

generality that Tb has tape-alfabet {0,1}.

7

A slide from lecture 11

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi

8

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m

9

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

10

Part of a slide from lecture 11:

Definition 10.3. Primitive Recursive Functions

(. . .)

In other words, the set PR is the smallest set of functions that

contains all the initial functions and is closed under the opera-

tions of composition and primitive recursion.

11

A slide from lecture 11

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

12

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

Sub(x,0) = x (so g = p11)

Sub(x, k +1) = Pred(Sub(x, k))

(= h(x, k,Sub(x, k)), so h = Pred(p33))

13

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

14

Example 10.5. Addition, Multiplication and Subtraction

Sub(x, y) =

{

x− y if x ≥ y

0 otherwise

x
.
− y

15

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .

16

Theorem 10.6.

The two-place predicates LT , EQ, GT , LE , GE , and NE are

primitive recursive.

(LT stands for “less than,” and the other five have similarly

intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then

P ∧Q, P ∨Q and ¬P are primitive recursive.

Proof. . .

17

Exercise.

Let f : Nn+1 → N be a primitive recursive function.

Show that the predicate P : Nn+1 → {true, false} defined by

P (X, y) = (f(X, y) = 0)

is primitive recursive.

18

Let P be n-place predicate,

f1, f2, . . . , fn : Nk → N

Then Q = P (f1, f2, . . . , fn) is k-place predicate, with

χQ = χP (f1, f2, . . . , fn)

Primitive recursiveness. . .

19

Let P be n-place predicate,

f1, f2, . . . , fn : Nk → N

then Q = P (f1, f2, . . . , fn) is k-place predicate,

χQ = χP (f1, f2, . . . , fn)

Primitive recursiveness. . .

Example.

(f1 = (3f2)
2 ∧ (f3 < f4 + f5)) ∨ ¬(P ∨Q)

20

Theorem 10.7.

Suppose f1, f2, . . . , fk are primitive recursive functions from N
n

to N,

P1, P2, . . . , Pk are primitive recursive n-place predicates,

and for every X ∈ N
n,

exactly one of the conditions P1(X), P2(X), . . . , Pk(X) is true.

Then the function f : Nn → N defined by

f(X) =



















f1(X) if P1(X) is true
f2(X) if P2(X) is true
. . .

fk(X) if Pk(X) is true

is primitive recursive.

Proof. . .

21

Example 10.8. The Mod and Div Functions

22

