Fundamentele Informatica 3

$$
\text { voorjaar } 2015
$$

http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 12, 4 mei 2015
10. Computable Functions
10.1. Primitive Recursive Functions

Exercise 10.1.

Let F be the set of partial functions from \mathbb{N} to \mathbb{N}. Then $F=C \cup U$, where the functions in C are computable and the ones in U are not.

Show that C is countable and U is not.

Exercise 7.37.

Show that if there is TM T computing the function $f: \mathbb{N} \rightarrow \mathbb{N}$, then there is another one, T^{\prime}, whose tape alphabet is $\{1\}$.

Exercise 7.37.

Show that if there is TM T computing the function $f: \mathbb{N} \rightarrow \mathbb{N}$, then there is another one, T^{\prime}, whose tape alphabet is $\{1\}$.

Suggestion: Suppose T has tape alphabet $\Gamma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. Encode Δ and each of the a_{i} 's by a string of 1 's and Δ 's of length $n+1$ (for example, encode Δ by $n+1$ blanks, and a_{i} by $1^{i} \Delta^{n+1-i}$). Have T^{\prime} simulate T, but using blocks of $n+1$ tape squares instead of single squares.

Exercise.

How many Turing machines are there having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$?

Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows.
The value $b(0)$ is 0 .
For $n>0$, there are only a finite number of Turing machines having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$. Let $T_{0}, T_{1}, \ldots, T_{m}$ be the TM of this type that eventually halt on input 1^{n}, and for each i, let n_{i} be the number of 1 's that T_{i} leaves on its tape when it halts after processing the input string 1^{n}. The number $b(n)$ is defined to be the maximum of the numbers $n_{0}, n_{1}, \ldots, n_{m}$.

Show that the total function $b: \mathbb{N} \rightarrow \mathbb{N}$ is not computable.

Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows.
The value $b(0)$ is 0 .
For $n>0$, there are only a finite number of Turing machines having n nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$. Let $T_{0}, T_{1}, \ldots, T_{m}$ be the TMs of this type that eventually halt on input 1^{n}, and for each i, let n_{i} be the number of 1 's that T_{i} leaves on its tape when it halts after processing the input string 1^{n}. The number $b(n)$ is defined to be the maximum of the numbers $n_{0}, n_{1}, \ldots, n_{m}$.

Show that the total function $b: \mathbb{N} \rightarrow \mathbb{N}$ is not computable. Suggestion: Suppose for the sake of contradiction that T_{b} is a TM that computes b. Then we can assume without loss of generality that T_{b} has tape-alfabet $\{0,1\}$.

A slide from lecture 11

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

3. Projection functions: For each $k \geq 1$ and each i with $1 \leq$ $i \leq k$, the projection function $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
p_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^{k} to \mathbb{N}, and for each i with $1 \leq i \leq k, g_{i}$ is a partial function from \mathbb{N}^{m} to \mathbb{N}. The partial function obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is the partial function h from \mathbb{N}^{m} to \mathbb{N} defined by the formula

$$
h(X)=f\left(g_{1}(X), g_{2}(X), \ldots, g_{k}(X)\right) \text { for every } X \in \mathbb{N}^{m}
$$

A slide from lecture 11

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Part of a slide from lecture 11:

Definition 10.3. Primitive Recursive Functions
(...)

In other words, the set $P R$ is the smallest set of functions that contains all the initial functions and is closed under the operations of composition and primitive recursion.

A slide from lecture 11

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

$x-y$

Example 10.5. Addition, Multiplication and Subtraction

$$
\begin{aligned}
& \qquad \operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\
0 & \text { otherwise }\end{cases} \\
& x \dot{-y}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sub}(x, 0)= x \\
& \operatorname{Sub}(x, k+1)= \quad\left(\text { so } g=p_{1}^{1}\right) \\
& \\
& \quad\left(=h(x, k, \operatorname{Sub}(x, k)), \text { so } h=\operatorname{Pred}\left(p_{3}^{3}\right)\right)
\end{aligned}
$$

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions: not necessarily total

Example 10.5. Addition, Multiplication and Subtraction

$$
\begin{aligned}
& \qquad \operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\
0 & \text { otherwise }\end{cases} \\
& x \dot{-} y
\end{aligned}
$$

n-place predicate P is function from \mathbb{N}^{n} to \{true, false\}
characteristic function χ_{P} defined by

$$
\chi_{P}(X)= \begin{cases}1 & \text { if } P(X) \text { is true } \\ 0 & \text { if } P(X) \text { is false }\end{cases}
$$

We say P is primitive recursive...

Theorem 10.6.

The two-place predicates $L T, E Q, G T, L E, G E$, and $N E$ are primitive recursive.
(LT stands for "less than," and the other five have similarly intuitive abbreviations.)
If P and Q are any primitive recursive n-place predicates, then $P \wedge Q, P \vee Q$ and $\neg P$ are primitive recursive.

Proof. . .

Exercise.

Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be a primitive recursive function.
Show that the predicate $P: \mathbb{N}^{n+1} \rightarrow\{$ true, false $\}$ defined by

$$
P(X, y)=(f(X, y)=0)
$$

is primitive recursive.

Let P be n-place predicate, $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{N}^{k} \rightarrow \mathbb{N}$
Then $Q=P\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is k-place predicate, with

$$
\chi_{Q}=\chi_{P}\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

Primitive recursiveness...

Let P be n-place predicate, $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ then $Q=P\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ is k-place predicate,

$$
\chi_{Q}=\chi_{P}\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

Primitive recursiveness...

Example.

$$
\left(f_{1}=\left(3 f_{2}\right)^{2} \wedge\left(f_{3}<f_{4}+f_{5}\right)\right) \vee \neg(P \vee Q)
$$

Theorem 10.7.

Suppose $f_{1}, f_{2}, \ldots, f_{k}$ are primitive recursive functions from \mathbb{N}^{n} to \mathbb{N},
$P_{1}, P_{2}, \ldots, P_{k}$ are primitive recursive n-place predicates, and for every $X \in \mathbb{N}^{n}$,
exactly one of the conditions $P_{1}(X), P_{2}(X), \ldots, P_{k}(X)$ is true.
Then the function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\left\{\begin{array}{cc}
f_{1}(X) & \text { if } P_{1}(X) \text { is true } \\
f_{2}(X) & \text { if } P_{2}(X) \text { is true } \\
\ldots & \text { if } P_{k}(X) \text { is true }
\end{array}\right.
$$

is primitive recursive.

Proof. . .

Example 10.8. The Mod and Div Functions

