Fundamentele Informatica 3

voorjaar 2015
http://www.liacs.leidenuniv.nl/~vlietrvan1/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 11, 21 april 2015
9. Undecidable Problems
9.5. Undecidable Problems

Involving Context-Free Languages
10. Computable Functions
10.1. Primitive Recursive Functions

A slide from lecture 9

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_{1} and P_{2} are decision problems. We say P_{1} is reducible to $P_{2}\left(P_{1} \leq P_{2}\right)$

- if there is an algorithm
- that finds, for an arbitrary instance I of P_{1}, an instance $F(I)$ of P_{2},
- such that
for every I the answers for the two instances are the same, or I is a yes-instance of P_{1}
if and only if $F(I)$ is a yes-instance of P_{2}.

A slide from lecture 9

Theorem 9.7. Suppose $L_{1} \subseteq \Sigma_{1}^{*}, L_{2} \subseteq \Sigma_{2}^{*}$, and $L_{1} \leq L_{2}$. If L_{2} is recursive, then L_{1} is recursive.

Suppose P_{1} and P_{2} are decision problems, and $P_{1} \leq P_{2}$. If P_{2} is decidable, then P_{1} is decidable.

Proof. . .

A slide from lecture 10

9.4. Post's Correspondence Problem

Instance:

10
101

01
100

A slide from lecture 10

Instance:

10
101
:---:
100
:---:
10
:---:
0

Match:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

A slide from lecture 10
Definition 9.14. Post's Correspondence Problem
An instance of Post's correspondence problem ($P C P$) is a set

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of pairs, where $n \geq 1$ and the α_{i} 's and β_{i} 's are all nonnull strings over an alphabet Σ.

The decision problem is this:
Given an instance of this type, do there exist a positive integer k and a sequence of integers $i_{1}, i_{2}, \ldots, i_{k}$, with each i_{j} satisfying $1 \leq i_{j} \leq n$, satisfying

$$
\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\beta_{i_{1}} \beta_{i_{2}} \ldots \beta_{i_{k}}
$$

$i_{1}, i_{2}, \ldots, i_{k}$ need not all be distinct.

A slide from lecture 10

Theorem 9.17.
Post's correspondence problem is undecidable.

9.5. Undecidable Problems Involving Context-Free Languages

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions...

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions

$$
S_{\alpha} \rightarrow \alpha_{i} S_{\alpha} c_{i} \mid \alpha_{i} c_{i} \quad(1 \leq i \leq n)
$$

Example derivation:
$S_{\alpha} \Rightarrow \alpha_{2} S_{\alpha} c_{2} \Rightarrow \alpha_{2} \alpha_{5} S_{\alpha} c_{5} c_{2} \Rightarrow \alpha_{2} \alpha_{5} \alpha_{1} S_{\alpha} c_{1} c_{5} c_{2} \Rightarrow \alpha_{2} \alpha_{5} \alpha_{1} \alpha_{3} c_{3} c_{1} c_{5} c_{2}$
Unambiguous

For an instance

$$
\left\{\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\right\}
$$

of PCP, let. . .

CFG G_{α} be defined by productions

$$
S_{\alpha} \rightarrow \alpha_{i} S_{\alpha} c_{i} \mid \alpha_{i} c_{i} \quad(1 \leq i \leq n)
$$

$\mathrm{CFG} G_{\beta}$ be defined by productions

$$
S_{\beta} \rightarrow \beta_{i} S_{\beta} c_{i} \mid \beta_{i} c_{i} \quad(1 \leq i \leq n)
$$

Example.

Let I be the following instance of PCP:

10
101

01
100

0
10

G_{α} and $G_{\beta} \ldots$

Theorem 9.20.
These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?
2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

Theorem 9.20.
This problem is undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?

Alternative proof. . .

Let CFG G_{1} be defined by productions

$$
S_{1} \rightarrow \alpha_{i} S_{1} \beta_{i}^{r} \quad \mid \quad \alpha_{i} \# \beta_{i}^{r} \quad(1 \leq i \leq n)
$$

Let CFG G_{2} be defined by productions

$$
S_{2} \rightarrow a S_{2} a\left|b S_{2} b\right| a \# a \mid b \# b
$$

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

Successive configurations z_{i} and z_{i+1} are almost identical; hence the language

$$
\left\{z \# z^{\prime} \# \mid z \text { and } z^{\prime} \text { are config's of } T \text { for which } z \vdash z^{\prime}\right\}
$$

cannot be described by CFG,
cf. $X X=\left\{x x \mid x \in\{a, b\}^{*}\right\}$.

Let T be TM, let x be string accepted by T, and let

$$
z_{0} \vdash z_{1} \vdash z_{2} \vdash z_{3} \ldots \vdash z_{n}
$$

be 'succesful computation' of T for x,
i.e., $z_{0}=q_{0} \Delta x$
and z_{n} is accepting configuration.

On the other hand, $z_{i} \# z_{i+1}^{r}$ is almost a palindrome, and palindromes can be described by CFG.

Lemma.

The language
$L_{1}=\left\{z \#\left(z^{\prime}\right)^{r} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$ is context-free.

Proof. . .

A slide from lecture 1

Example 5.3. A Pushdown Automaton Accepting SimplePal
SimplePal $=\left\{x c x^{r} \quad \mid x \in\{a, b\}^{*}\right\}$

Definition 9.21. Valid Computations of a TM
Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be a Turing machine.
A valid computation of T is a string of the form

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n} \#
$$

if n is even, or

$$
z_{0} \# z_{1}^{r} \# z_{2} \# z_{3}^{r} \ldots \# z_{n}^{r} \#
$$

if n is odd,
where in either case, \# is a symbol not in Γ, and the strings z_{i} represent successive configurations of T on some input string x, starting with the initial configuration z_{0} and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_{T}.

Theorem 9.22.

For a TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,

- the set C_{T} of valid computations of T is the intersection of two context-free languages,
- and its complement C_{T}^{\prime} is a context-free language.

Proof. . .

Theorem 9.22.

For a TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,

- the set C_{T} of valid computations of T is the intersection of two context-free languages,
- and its complement C_{T}^{\prime} is a context-free language.

Proof. Let
$L_{1}=\left\{z \#\left(z^{\prime}\right)^{r} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$
$L_{2}=\left\{z^{r} \# z^{\prime} \# \mid z\right.$ and z^{\prime} are config's of T for which $\left.z \vdash z^{\prime}\right\}$
$I=\{z \# \mid z$ is initial configuration of $T\}$
$A=\{z \# \mid z$ is accepting configuration of $T\}$
$A_{1}=\left\{z^{r} \# \mid z\right.$ is accepting configuration of $\left.T\right\}$

$$
C_{T}=L_{3} \cap L_{4}
$$

where

$$
\begin{aligned}
& L_{3}=I L_{2}^{*}\left(A_{1} \cup\{\wedge\}\right) \\
& L_{4}=L_{1}^{*}(A \cup\{\wedge\})
\end{aligned}
$$

for each of which we can algorithmically construct a CFG

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then. .

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then

1. Either, x does not end with \#

Otherwise, let $x=z_{0} \# z_{1} \# \ldots \# z_{k} \#$
(no reversed strings in this partitioning)
2. Or, for some even i, z_{i} is not configuration of T
3. Or, for some odd i, z_{i}^{r} is not configuration of T
4. Or z_{0} is not initial configuration of T
5. Or z_{k} is neither accepting configuration, nor the reverse of one
6. Or, for some even $i, z_{i} \nvdash z_{i+1}^{r}$
7. Or, for some odd $i, z_{i}^{r} \nvdash z_{i+1}$

If $x \in C_{T}^{\prime}$ (i.e., $x \notin C_{T}$), then

1. Either, x does not end with $\#$

Otherwise, let $x=z_{0} \# z_{1} \# \ldots \# z_{k} \#$
2. Or, for some even i, z_{i} is not configuration of T
3. Or, for some odd i, z_{i}^{r} is not configuration of T
4. Or z_{0} is not initial configuration of T
5. Or z_{k} is neither accepting configuration, nor the reverse of one
6. Or, for some even $i, z_{i} \nvdash z_{i+1}^{r}$
7. Or, for some odd $i, z_{i}^{r} \nvdash z_{i+1}$

Hence, C_{T}^{\prime} is union of seven context-free languages, for each of which we can algorithmically construct a CFG

Corollary.

The decision problem
CFGNonEmptyIntersection:
Given two CFGs G_{1} and G_{2}, is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ nonempty?
is undecidable (cf. Theorem 9.20(1)).
Proof.
Let
AcceptsSomething: Given a TM T, is $L(T) \neq \emptyset$?
Prove that AcceptsSomething \leq CFGNonEmptyIntersection
Study this result yourself.

Theorem 9.23. The decision problem

$$
\begin{aligned}
& \text { CFGGeneratesAll: Given a CFG } G \text { with terminal alphabet } \\
& \Sigma \text {, is } L(G)=\Sigma^{*} \text { ? }
\end{aligned}
$$

is undecidable.

Proof.

Let
AcceptsNothing: Given a TM T, is $L(T)=\emptyset$?
Prove that AcceptsNothing \leq CFGGeneratesAll ...
Study this result yourself.

Undecidable Decision Problems (we have discussed)

10. Computable Functions

10.1. Primitive Recursive Functions

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

3. Projection functions: For each $k \geq 1$ and each i with $1 \leq$ $i \leq k$, the projection function $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
p_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^{k} to \mathbb{N}, and for each i with $1 \leq i \leq k, g_{i}$ is a partial function from \mathbb{N}^{m} to \mathbb{N}.
The partial function obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is the partial function h from \mathbb{N}^{m} to \mathbb{N} defined by the formula

$$
h(X)=f\left(g_{1}(X), g_{2}(X), \ldots, g_{k}(X)\right) \text { for every } X \in \mathbb{N}^{m}
$$

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and g and h are functions of n and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from g and h by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Add}(x, y)=x+y
$$

Definition 10.3. Primitive Recursive Functions

The set $P R$ of primitive recursive functions is defined as follows.

1. All initial functions are elements of $P R$.
2. For every $k \geq 0$ and $m \geq 0$, if $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $g_{1}, g_{2}, \ldots, g_{k}$: $\mathbb{N}^{m} \rightarrow \mathbb{N}$ are elements of $P R$, then the function $f\left(g_{1}, g_{2}, \ldots, g_{k}\right)$ obtained from f and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is an element of $P R$.
3. For every $n \geq 0$, every function $g: \mathbb{N}^{n} \rightarrow \mathbb{N}$ in $P R$, and every function $h: \mathbb{N}^{n+2} \rightarrow \mathbb{N}$ in $P R$, the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ obtained from g and h by primitive recursion is in $P R$.

In other words, the set $P R$ is the smallest set of functions that contains all the initial functions and is closed under the operations of composition and primitive recursion.

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Mult}(x, y)=x * y
$$

Example 10.5. Addition, Multiplication and Subtraction

$$
\operatorname{Sub}(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { otherwise }\end{cases}
$$

$x-y$

