Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-5 rvvliet(at)liacs(dot)nl 071-527 5777

college 9, 7 april 2014

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided9.2. Reductions and the Halting ProblemMore Decision Problems Involving Turing Machines 9. Undecidable Problems

9.3.

A slide from lecture 8:

Definition 9.1. The Languages NSA and SA

SA $\parallel \parallel \parallel$ $\{e(T)\mid T \text{ is a TM, and } e(T)\not\in L(T)\}$ $\{e(T)\mid T \text{ is a TM, and } e(T)\in L(T)\}$

($\it NSA$ and $\it SA$ are for "non-self-accepting" and "self-accepting.")

Ν

A slide from lecture 8:

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Decision problem: problem for which the answer is 'yes' or 'no':

A slide from lecture 8:

Given \dots , is it true that \dots ?

yes-instances of a decision problem: instances for which the answer is 'yes'

no-instances of a decision problem: instances for which the answer is 'no'

ω

A slide from lecture 8:

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:
1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E': strings not representing instances

A slide from lecture 8:

an encoding e of instances I as strings e(I) over alphabet Σ is called reasonable, if For general decision problem P,

- there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective 3. string e(I) can be decoded

A slide from lecture 8:

For general decision problem ${\it P}$ and reasonable encoding ${\it e}_{\it r}$

 $\begin{array}{ll} Y(P) \ = \ \{e(I) \mid I \text{ is yes-instance of } P\} \\ N(P) \ = \ \{e(I) \mid I \text{ is no-instance of } P\} \\ E(P) \ = \ Y(P) \cup N(P) \end{array}$

E(P) must be recursive

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of instances of P over the alphabet Σ , we say that P is decidable if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

able. Theorem 9.4. The decision problem Self-Accepting is undecid-For every decision problem, there is complementary problem P^\prime , obtained by changing 'true' to 'false' in statement.

Proof...

Non-Self-Accepting: Given a TM T, does T fail to accept e(T) ?

9

10

Theorem 9.5. For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

- Ľ Recursive algorithms
- Ν Given NFA M and string x, is $x \in L(M)$?
- ω Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

11

12

Theorem 2.15. Suppose $M_1=(Q_1,\Sigma,q_1,A_1,\delta_1)$ and $M_2=(Q_2,\Sigma,q_2,A_2,\delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA (Q,Σ,q_0,A,δ) , where $Q=Q_1\times Q_2$ $q_0=(q_1,q_2)$ and the transition function δ is defined by the formula $\delta((p,q),\sigma)=(\delta_1(p,\sigma),\delta_2(q,\sigma))$ for every $p\in Q_1$, every $q\in Q_2$, and every $\sigma\in \Sigma$.

Then 1. If

1. If $A = \{(p,q) | p \in A_1 \text{ or } q \in A_2\}$, M accepts the language $L_1 \cup L_2$. 2. If $A = \{(p,q) | p \in A_1 \text{ and } q \in A_2\}$, M accepts the language $L_1 \cap L_2$. 3. If $A = \{(p,q) | p \in A_1 \text{ and } q \notin A_2\}$, M accepts the language $L_1 \cap L_2$.

14

Definition 9.6. Reducing One Decision Problem to and Reducing One Language to Another Another,

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible

- of P_2 , to P_2 $(P_1 \le P_2)$ \bullet if there is an algorithm \bullet that finds, for an arbitrary instance I of P_1 , an instance F(I)
- such that

for every I the answers for the two instances or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 . are the same

and Reducing One Language to Another (continued) Definition 9.6. Reducing One Decision Problem to Another,

tively, we say L_1 is reducible to L_2 ($L_1 \leq L_2$) • if there is a Turing-computable function • $f: \Sigma_1^* \to \Sigma_2^*$ • such that for every $x \in \Sigma_1^*$, If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2 , respec-

 $x \in L_1$ if and only if $f(x) \in L_2$

Less / more formal definitions

16

15

Theorem 9.7. Suppose $L_1\subseteq \Sigma_1^*,\ L_2\subseteq \Sigma_2^*,$ and $L_1\le L_2.$ If L_2 is recursive, then L_1 is recursive.

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

17

In context of decidability: decision problem $P \approx \text{language } Y(P)$

Question

"is instance I of P a yes-instance ?"

is essentially the same as

"does string \boldsymbol{x} represent yes-instance of P ?",

"is string $x \in Y(P)$?"

Therefore, $P_1 \leq P_2$, if and only if $Y(P_1) \leq Y(P_2)$.

18

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w ?

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that $Self-Accepting \leq Accepts \dots$

19

20

Application:

n=4; while (n is the sum of two primes) n=n+2;

This program loops forever, if and only if Goldbach's conjecture is true.

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that $Self-Accepting \leq Accepts \dots$

2. Prove that $Accepts \leq Halts$

21

22

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x\in L(T)$? Instances are \ldots

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are ...

 ${\it Halts}$: Given a TM T and a string x, does T halt on input x ?

Now fix a TM T: Instances are ...

Instances are ...

Decidable or undecidable ? (cf. Exercise 9.7.) $T ext{-}Accepts$: Given a string x, does T accept x?

23 24

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM T such that the decision problem

"Given w, does T accept w?"

is unsolvable

Show that every TM accepting a nonrecursive language has this property.

25

26

cidable. Theorem 9.9. The following five decision problems are unde-

1. Accepts- Λ : Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda$

Reduction from Accepts to Accepts- Λ .

Instance of Accepts is (T_1,x) for TM T_1 and string x. Instance of Accepts- Λ is TM T_2 .

$$T_2 = F(T_1, x) =$$

$$Write(x) \rightarrow T_1$$

 T_2 accepts Λ , if and only if T_1 accepts x

If we had an algorithm/TM A_2 to solve Accepts-A, then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

Given instance (T_1,x) of Accepts, 1. construct $T_2=F(T_1,x)$; 2. run A_2 on T_2 .

 A_1 answers 'yes' for (T_1,x) , if and only if A_2 answers 'yes' for T_2 , if and only T_2 accepts Λ , if and only if T_1 accepts x.

27

28

Theorem 9.9. The following five decision problems are undecidable.

Proof.

AcceptsEverything: Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

2. Prove that $Accepts-\Lambda \leq AcceptsEverything$

3. Prove that $AcceptsEverything \leq Subset$

Proof.

Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

cidable.

Theorem 9.9.

The following five decision problems are unde-

29

30

cidable. Theorem 9.9. The following five decision problems are unde-

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

Theorem 9.9. The following five decision problems are undecidable.

WritesSymbol: Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that $Accepts-\Lambda \leq WritesSymbol$

32

31