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9. Undecidable Problems
9.1. A Language That Can't Be Accepted,
and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines
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A slide from lecture 8:

Theorem 9.2. The language NSA is not recursively enumerable.

The language SA is recursively enumerable but not recursive.

Proof. ..

A slide from lecture 8:

Self-Accepting: Given a TM T, does T accept the string e(7)7?
Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances
3. E’: strings not representing instances

A slide from lecture 8:

For general decision problem P and reasonable encoding e,

Y(P) = {e(d)| I is yes-instance of P}
N(P) {e(I) | I is no-instance of P}
E(P) Y(P)UN(P)

E(P) must be recursive

A slide from lecture 8:
Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T)| Tisa TM, and e(T) ¢ L(T)}
SA = {e(T)| Tisa TM, and e(T) € L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

A slide from lecture 8:

Decision problem: problem for which the answer is ‘yes’ or ‘no’:
Given ..., is it true that ...7?

yes-instances of a decision problem:
instances for which the answer is ‘yes’

no-instances of a decision problem:
instances for which the answer is ‘no’

A slide from lecture 8:

For general decision problem P,
an encoding e of instances I as strings e(I) over alphabet <
is called reasonable, if

1. there is algorithm to decide if string over X is encoding e(I)
2. e is injective
3. string e(I) can be decoded

Definition 9.3. Decidable Problems

If P is a decision problem, and e is a reasonable encoding of
instances of P over the alphabet 3, we say that P is decidable if
Y(P) ={e(I)| I is a yes-instance of P} is a recursive language.



Theorem 9.4. The decision problem Self-Accepting is undecid-
able.

Proof. ..

Theorem 9.5. For every decision problem P, P is decidable if
and only if the complementary problem P’ is decidable.

Proof. ..

(Informal) Examples of reductions
1. Recursive algorithms
2. Given NFA M and string =, is z € L(M) 7

3. Given FAs My and Mp, is L(My1) C L(Mp) ?

Definition 9.6. Reducing One Decision Problem to Another,
and Reducing One Language to Another

Suppose P; and P, are decision problems. We say P; is reducible
to P (P < Po)
e if there is an algorithm
e that finds, for an arbitrary instance I of P;, an instance F(I)
of Py,
e such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P;

if and only if F(I) is a yes-instance of P5.

For every decision problem, there is complementary problem P/,
obtained by changing ‘true’ to ‘false’ in statement.

Non-Self-Accepting:
Given a TM T, does T fail to accept e(T) ?
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9.2. Reductions and the Halting Problem
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Theorem 2.15.
Suppose M1 = (Q1,%,q1, A1,01) and Mz = (Q2, %, q2, A2, 02)
are finite automata accepting L1 and Lo, respectively.
Let M be the FA (Q,X,qg, A,6), where
Q=0Q1%xQ2
a0 = (a1, 92)
and the transition function ¢ is defined by the formula

3((p;a),0) = (81(p, 0),92(q, 7))
for every p € Q1, every g € @2, and every o € .

Then
1. If A= {(p,q)| p € Ay or g € Ay},

M accepts the language Lj U Lo.
2. If A= {(p,q)| p € A1 and q € Ao},

M accepts the language Ly N Lo.

3. If A= {(p,@)| p € A1 and q ¢ Ao},
M accepts the language L1 — Lo.
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Definition 9.6. Reducing One Decision Problem to Another,
and Reducing One Language to Another (continued)

If L1 and L, are languages over alphabets >; and X5, respec-
tively, we say Lj is reducible to Lo (L1 < L»)

e if there is a Turing-computable function

o fiX] =325

e such that for every z € 7%,

x € Ly if and only if f(z) € Lo

Less / more formal definitions.
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Theorem 9.7. Suppose Ly C X%, Lo C %5, and Ly < Ly. If Ly
is recursive, then Lj is recursive.

Suppose P; and P, are decision problems, and P; < Pp. If Py is
decidable, then P; is decidable.

Proof. ..

Two more decision problems:
Accepts: Given a TM T and a string w, is w e L(T) ?

Halts: Given a TM T and a string w, does T halt on input w 7

Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.
1. Prove that Self-Accepting < Accepts ...

2. Prove that Accepts < Halts .
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9.3. More Decision Problems
Involving Turing Machines
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In context of decidability: decision problem P ~ language Y (P)
Question

“is instance I of P a yes-instance 7"

is essentially the same as

“does string = represent yes-instance of P 7",
i.e.,

“is string x € Y(P) 7"

Therefore, P; < P, if and only if Y(Py) <Y ().
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Theorem 9.8. Both Accepts and Halts are undecidable.
Proof.

1. Prove that Self-Accepting < Accepts .
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Application:

n = 4;
while (n is the sum of two primes)
n = n+2;

This program loops forever, if and only if Goldbach's conjecture
is true.
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Accepts: Given a TM T and a string z, is z € L(T) ?
Instances are . ..

Halts: Given a TM T and a string x, does T halt on input = 7
Instances are . ..

Self-Accepting: Given a TM T, does T accept the string e(7)?
Instances are . ..

Now fix a TM T
T-Accepts: Given a string =, does T accept =z 7
Instances are . ..
Decidable or undecidable ? (cf. Exercise 9.7.)
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Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least
one TM T such that the decision problem

“Given w, does T accept w ?"

is unsolvable.

Show that every TM accepting a nonrecursive language has this
property.
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Reduction from Accepts to Accepts-A.

Instance of Accepts is (Ty,x) for TM Ty and string z.
Instance of Accepts-A is TM T5.

T = F(T1,2) =
Write(xz) — Ty

To accepts A, if and only if 77 accepts z.
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Theorem 9.9. The following five decision problems are unde-
cidable.

2. AcceptsEverything:
Given a TM T with input alphabet =, is L(T) = <* ?

Proof.

2. Prove that Accepts-A < AcceptsEverything . ..
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Theorem 9.9. The following five decision problems are unde-
cidable.

4. Equivalent: Given two TMs T; and T5, is L(Ty) = L(T5)
Proof.

4. Prove that Subset < Equivalent ...
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Theorem 9.9. The following five decision problems are unde-
cidable.

1. Accepts-A: Givena TM T, is Ae L(T) ?
Proof.

1. Prove that Accepts < Accepts-A . ..
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If we had an algorithm/TM A, to solve Accepts-A,
then we would also have an algorithm/TM A7 to solve Accepts,
as follows:

Asq:

Given instance (Ty,z) of Accepts,

1. construct Th = F(T4,z);

2. run Ap on Th.

Ay answers ‘ves’ for (T, z),

if and only if Ay answers ‘yes’ for 15,

if and only 75 accepts A,

if and only if T} accepts z.
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Theorem 9.9. The following five decision problems are unde-
cidable.

3. Subset: Given two TMs Ty and T5, is L(T1) C L(T») ?
Proof.

3. Prove that AcceptsEverything < Subset . ..
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Theorem 9.9. The following five decision problems are unde-
cidable.

5. WritesSymbol:
Given a TM T and a symbol a in the tape alphabet of T,
does T ever write q if it starts with an empty tape ?

Proof.

5. Prove that Accepts-A < WritesSymbol . ..
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