Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 9, 7 april 2014

9. Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided
9.2. Reductions and the Halting Problem
9.3. More Decision Problems Involving Turing Machines

Definition 9.1. The Languages NSA and SA

Let

$$NSA = \{e(T) \mid T \text{ is a TM, and } e(T) \notin L(T)\}$$

 $SA = \{e(T) \mid T \text{ is a TM, and } e(T) \in L(T)\}$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

Theorem 9.2. The language *NSA* is not recursively enumerable. The language *SA* is recursively enumerable but not recursive.

Proof...

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

yes-instances of a decision problem: instances for which the answer is 'yes'

no-instances of a decision problem: instances for which the answer is 'no'

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

- 1. SA: strings representing yes-instances
- 2. NSA: strings representing no-instances
- 3. E': strings not representing instances

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called *reasonable*, if

- 1. there is algorithm to decide if string over Σ is encoding e(I)
- 2. e is injective
- 3. string e(I) can be decoded

For general decision problem P and reasonable encoding e,

$$Y(P) = \{e(I) \mid I \text{ is yes-instance of } P\}$$

$$N(P) = \{e(I) \mid I \text{ is no-instance of } P\}$$

$$E(P) = Y(P) \cup N(P)$$

E(P) must be recursive

Definition 9.3. Decidable Problems

If *P* is a decision problem, and *e* is a reasonable encoding of instances of *P* over the alphabet Σ , we say that *P* is *decidable* if $Y(P) = \{e(I) \mid I \text{ is a yes-instance of } P\}$ is a recursive language.

Theorem 9.4. The decision problem *Self-Accepting* is undecidable.

Proof...

For every decision problem, there is *complementary* problem P', obtained by changing 'true' to 'false' in statement.

Non-Self-Accepting: Given a TM T, does T fail to accept e(T) ? **Theorem 9.5.** For every decision problem P, P is decidable if and only if the complementary problem P' is decidable.

Proof...

9.2. Reductions and the Halting Problem

(Informal) Examples of reductions

- 1. Recursive algorithms
- 2. Given NFA M and string x, is $x \in L(M)$?
- 3. Given FAs M_1 and M_2 , is $L(M_1) \subseteq L(M_2)$?

Theorem 2.15.

Suppose $M_1 = (Q_1, \Sigma, q_1, A_1, \delta_1)$ and $M_2 = (Q_2, \Sigma, q_2, A_2, \delta_2)$ are finite automata accepting L_1 and L_2 , respectively. Let M be the FA $(Q, \Sigma, q_0, A, \delta)$, where

 $Q = Q_1 \times Q_2$

 $q_0 = (q_1, q_2)$

and the transition function δ is defined by the formula

 $\delta((p,q),\sigma) = (\delta_1(p,\sigma), \delta_2(q,\sigma))$ for every $p \in Q_1$, every $q \in Q_2$, and every $\sigma \in \Sigma$.

Then

1. If
$$A = \{(p,q) | p \in A_1 \text{ or } q \in A_2\}$$
,
 M accepts the language $L_1 \cup L_2$.
2. If $A = \{(p,q) | p \in A_1 \text{ and } q \in A_2\}$,
 M accepts the language $L_1 \cap L_2$.
3. If $A = \{(p,q) | p \in A_1 \text{ and } q \notin A_2\}$,
 M accepts the language $L_1 - L_2$.

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$)

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that

for every I the answers for the two instances are the same, or I is a yes-instance of P_1

if and only if F(I) is a yes-instance of P_2 .

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another (continued)

If L_1 and L_2 are languages over alphabets Σ_1 and Σ_2 , respectively, we say L_1 is reducible to L_2 ($L_1 \leq L_2$)

- if there is a Turing-computable function
- $f: \Sigma_1^* \to \Sigma_2^*$
- such that for every $x \in \Sigma_1^*$,

 $x \in L_1$ if and only if $f(x) \in L_2$

Less / more formal definitions.

Theorem 9.7. Suppose $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, and $L_1 \leq L_2$. If L_2 is recursive, then L_1 is recursive.

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Proof...

In context of decidability: decision problem $P \approx$ language Y(P)

Question

"is instance I of P a yes-instance ?"

is essentially the same as

"does string x represent yes-instance of P?",

i.e.,

"is string $x \in Y(P)$?"

Therefore, $P_1 \leq P_2$, if and only if $Y(P_1) \leq Y(P_2)$.

Two more decision problems:

Accepts: Given a TM T and a string w, is $w \in L(T)$?

Halts: Given a TM T and a string w, does T halt on input w?

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

1. Prove that Self-Accepting \leq Accepts ...

Theorem 9.8. Both Accepts and Halts are undecidable.

Proof.

- 1. Prove that Self-Accepting \leq Accepts ...
- 2. Prove that $Accepts \leq Halts \dots$

Application:

```
n = 4;
while (n is the sum of two primes)
n = n+2;
```

This program loops forever, if and only if Goldbach's conjecture is true.

9.3. More Decision Problems Involving Turing Machines

Accepts: Given a TM T and a string x, is $x \in L(T)$? Instances are . . .

Halts: Given a TM T and a string x, does T halt on input x? Instances are . . .

Self-Accepting: Given a TM T, does T accept the string e(T)? Instances are ...

Now fix a TM T: T-Accepts: Given a string x, does T accept x ? Instances are ... Decidable or undecidable ? (cf. **Exercise 9.7.**)

Exercise 9.7.

As discussed at the beginning of Section 9.3, there is at least one TM T such that the decision problem

"Given w, does T accept w?"

is unsolvable.

Show that every TM accepting a nonrecursive language has this property.

1. Accepts-A: Given a TM T, is $\Lambda \in L(T)$?

Proof.

1. Prove that $Accepts \leq Accepts - \Lambda$. . .

Reduction from *Accepts* to *Accepts*- Λ .

Instance of *Accepts* is (T_1, x) for TM T_1 and string x. Instance of *Accepts*- Λ is TM T_2 .

 $T_2 = F(T_1, x) =$ $Write(x) \rightarrow T_1$

 T_2 accepts Λ , if and only if T_1 accepts x.

If we had an algorithm/TM A_2 to solve Accepts- Λ , then we would also have an algorithm/TM A_1 to solve Accepts, as follows:

```
A<sub>1</sub>:
Given instance (T_1, x) of Accepts,
1. construct T_2 = F(T_1, x);
2. run A<sub>2</sub> on T<sub>2</sub>.
```

```
A_1 answers 'yes' for (T_1, x),
if and only if A_2 answers 'yes' for T_2,
if and only T_2 accepts \Lambda,
if and only if T_1 accepts x.
```

2. AcceptsEverything: Given a TM T with input alphabet Σ , is $L(T) = \Sigma^*$?

Proof.

2. Prove that Accepts- $\Lambda \leq AcceptsEverything \dots$

3. Subset: Given two TMs T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?

Proof.

3. Prove that $AcceptsEverything \leq Subset \dots$

4. Equivalent: Given two TMs T_1 and T_2 , is $L(T_1) = L(T_2)$

Proof.

4. Prove that $Subset \leq Equivalent \dots$

5. WritesSymbol:

Given a TM T and a symbol a in the tape alphabet of T, does T ever write a if it starts with an empty tape ?

Proof.

5. Prove that Accepts- $\Lambda \leq WritesSymbol \dots$