Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 8, 31 maart 2014

- . 5 8. Recursively Enumerable Languages
 Not Every Language is Recursively Enumerable
- Undecidable Problems
 A Language That Can't Be Accepted, and a Problem That Can't Be Decided

Huiswerkopgave 2, inleverdatum 1 april 2014, 13:45 uur

N

A slide from lecture 7

Chomsky hierarchy

	Z Z	unrestr. grammar TM	re. languages	0
	LBA	cs. grammar	cs. languages	ш
	PDA	cf. grammar	cf. languages	N
reg. expression	FA	reg. grammar	reg. languages reg. grammar	ω

 $\mathcal{S}_3\subseteq\mathcal{S}_2\subseteq\mathcal{S}_1\subseteq\mathcal{R}\subseteq\mathcal{S}_0$

 $(modulo \Lambda)$

8.5. Not Every Language is Recursively Enumerable

ω

4

From Fundamentele Informatica 1:

Definition 8.23.

A Set A of the Same Size as B or Larger Than B

there is a bijection $f:A\to B$. Two sets ${\cal A}$ and ${\cal B}$, either finite or infinite, are the same size if

 ${\cal A}$ is larger than ${\cal B}$ if some subset of ${\cal A}$ is the same size as ${\cal B}$ but ${\cal A}$ itself is not.

From Fundamentele Informatica 1:

Definition 8.24.

Countably Infinite and Countable Sets

A set A is countably infinite (the same size as \mathbb{N}) if there is a bijection $f:\mathbb{N}\to A$, or a list a_0,a_1,\ldots of elements of A such that every element of A appears exactly once in the list.

 ${\cal A}$ is ${\it countable}$ if ${\cal A}$ is either finite or countably infinite.

6

Theorem 8.25.

Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

(proof of second claim is Exercise 8.35...)

Example 8.26. The Set $\mathbb{N} \times \mathbb{N}$ is Countable

$$\mathbb{N} \times \mathbb{N} = \{(i, j) \mid i, j \in \mathbb{N}\}\$$

although $\mathbb{N}\times\mathbb{N}$ looks much bigger than \mathbb{N}

:	(3,0)	(2,0)	(1,0)	(0,0)
:	(3, 1)	(2, 1)	(1, 1)	(0, 1)
:	(3, 2)	(2, 2)	(1, 2)	(0, 2)
:	(3, 3)	(2,3)	(1,3)	(0,3)
:	:	:	:	:

Example 8.28.A Countable Union of Countable Sets Is Countable

Example 8.29. Languages Are Countable Sets

 $L \subseteq \Sigma^* = \bigcup_{i=0}^{\infty} \Sigma^i$

$$S = \bigcup_{i=0}^{\infty} S_i$$

Same construction as in Example 8.26, but...

Two ways to list Σ^*

9

10

A slide from lecture 4

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

2. Tape alphabet Γ of every Turing machine T is subset of infinite set $S=\{a_1,a_2,a_3,\ldots\}$, where $a_1=\Delta$.

1. Names of the states are irrelevant.

Assumptions:

A slide from lecture 4

12

11

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$$n(h_a)=1,\ n(h_r)=2,\ n(q_0)=3,\ n(q)\geq 4$$
 for other $q\in Q$.

Assign numbers to each tape symbol:

Assign numbers to each tape head direction: $n(R)=1,\ n(L)=2,\ n(S)=3.$

$$p(R) = 1$$
, $n(L) = 2$, $n(S) = 3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p,\sigma)=(q,\tau,D)$

$$e(m) = 1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0$$

We list the moves of T in some order as m_1, m_2, \ldots, m_k , and we define

$$e(T) = e(m_1)0e(m_2)0...0e(m_k)0$$

If $z=z_1z_2\dots z_j$ is a string, where each $z_i\in\mathcal{S}$,

$$e(z) = {01}^{n(z_1)} {01}^{n(z_2)} {0 \dots 01}^{n(z_j)} {0}$$

14

Example 8.30. The Set of Turing Machines Is Countable

(e is encoding function)Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet Σ There is injective function $e:\mathcal{T}(\Sigma) \to \{0,1\}^*$

Hence (\ldots) , set of recursively enumerable languages is countable

Exercise 8.41.

For each case below, determine whether the given set is countable or uncountable. Prove your answer.

- $\textbf{a.} \ \ \,$ The set of all three-element subsets of $\mathbb N$
- b. The set of all finite subsets of $\mathbb N$

15

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb N$ and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

17

18

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

A0 A1 A2 A3 A4 A6 A6 A9 $\{1, 3, 5, 7, 9, \ldots\}$ $\{n \in \mathbb{N} \mid n > 12\}$ $\{0, 2, 5, 9, \ldots\}$ $\{1, 2, 3, 8, 12, \ldots\}$ $\{0, 3, 6\}$ {4} {2,3,5,7,11,... {8,16,24,...}

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of $\ensuremath{\mathbb{N}}$ is complete,

one. i.e., every list A_0,A_1,A_2,\ldots of subsets of $\mathbb N$ leaves out at least

Take

A = $\{i\in\mathbb{N}\mid i\not\in A_i\}$

A = $\{i\in\mathbb{N}\mid i\notin A_i\}$

19

:	$\mid n >$		$A_7 = \mathbb{N}$	$A_6 = \{8, 16, 24, \ldots\}$		$A_4 = \{4\}$	$A_3 = \emptyset$		$A_1 = \{1, 2, 3, 8, 12, \ldots\}$		
	0	0	Н	0	0	0	0	Н	0	Ц	0
	0	Н	Н	0	0	0	0	0	Н	0	Н
	0	0	Н	0	Н	0	0	0	Н	Н	N
	0	Н	Н	0	Н	0	0	Н	Н	0	ω
	0	0	Н	0	0	Н	0	0	0	0	4
:	0	Н	Н	0	Н	0	0	0	0	Н	σ
•	0	0	Н	0	0	0	0	Н	0	0	6
	0	Н	Н	0	Н	0	0	0	0	0	7
	0	0	Н	Н	0	0	0	0	Н	0	ω
	0	\vdash	\vdash	0	0	0	0	0	0	Н	9
	:	:	:	:	:	:	:	:	:	:	:

20

 $A_0 = \{0, 2, 5, 9, \dots\}$ $A_1 = \{1, 2, 3, 8, 12, \dots\}$ $A_2 = \{0, 3, 6\}$ $A_3 = \{4\}$ $A_5 = \{2, 3, 5, 7, 11, \dots\}$ $A_6 = \{8, 16, 24, \dots\}$ $A_7 = \mathbb{N}$ $A_8 = \{1, 3, 5, 7, 9, \dots\}$ $A_9 = \{n \in \mathbb{N} \mid n > 12\}$ $A = \{2, 3, 6, 8, 9, \ldots\}$ 0 00100001010 0 01100001 0 1 0 1 0 0 1 1 2 Н 01101001103 1 0 0000004 0 0110100015 ᆸ 0010001006 0 0 1 1 0 0 0 7 ш

Hence, there are uncountably many subsets of $\ensuremath{\mathbb{N}}$

21

22

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.

(including Exercise 8.38)

Theorem 8.25.

Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

Proof...

(proof of second claim is Exercise 8.35...)

Suggestion: proof by contradiction

uncountable.

Exercise 8.38.

Show that is ${\cal S}$ is uncountable and ${\cal T}$ is countable, then ${\cal S}-{\cal T}$ is

23

Undecidable Problems

9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided

25

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb N$ and $\{0,1\}^*$ are the same size, there are uncountably many languages over $\{0,1\}$

27

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

$$A_0 = \{0, 2, 5, 9, \dots\}$$

$$A_1 = \{1, 2, 3, 8, 12, \dots\}$$

$$A_2 = \{0, 3, 6\}$$

$$A_3 = \emptyset$$

$$A_4 = \{4\}$$

$$A_5 = \{2, 3, 5, 7, 11, \dots\}$$

$$A_6 = \{8, 16, 24, \dots\}$$

$$A_7 = \mathbb{N}$$

$$A_8 = \{1, 3, 5, 7, 9, \dots\}$$

$$A_9 = \{n \in \mathbb{N} \mid n > 12\}$$

 $\begin{array}{l}
A_0 = \{0, 2, 5, 9, \ldots\} \\
A_1 = \{1, 2, 3, 8, 12, \ldots\} \\
A_2 = \{0, 3, 6\} \\
A_3 = \{4\} \\
A_5 = \{2, 3, 5, 7, 11, \ldots\} \\
A_6 = \{8, 16, 24, \ldots\} \\
A_7 = \mathbb{N} \\
A_9 = \{n \in \mathbb{N} \mid n > 12
\end{array}$ {2,3,6,8,9,...} $= \{1, 3, 5, 7, 9, \ldots\}$ $= \{n \in \mathbb{N} \mid n > 12\}$ 0 0010001010 01100000101 0 0 1 0 0 0 1 1 2 01101001103 0 4 0 0 0 1 0 0 0 0 0 <u>+</u>0000+5 0010001006 0 01100007 0 0 1 1 0 0 0 0 0 0 110000019

Hence, there are uncountably many subsets of $\ensuremath{\mathbb{N}}$

A slide from lecture 5:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*,$ if L(T)=L.

 $T\ \ decides\ L$, if $T\ \ computes\ \ the\ \ characteristic\ \ function$

 $\chi_L: \Sigma^*$

(0, 1)

A language L is recursively enumerable, if there is a TM that accepts L,

and L is recursive, if there is a TM that decides

26

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

one. No list of subsets of $\mathbb N$ is complete, i.e., every list A_0,A_1,A_2,\dots of subsets of $\mathbb N$ leaves out at least

Take

$$A = \{i \in \mathbb{N} \mid i \notin A_i\}$$

28

:	$= \{n \in \mathbb{N} \mid$	$A_8 = \{1, 3, 5, 7, 9, \ldots\}$	İ	$A_6 = \{8, 16, 24, \ldots\}$				= {0,	= {1,		
	0	0	Н	0	0	0	0	Н	0	1	0
	0	Н	Н	0	0	0	0	0	\vdash	0	1
	0	0	Н	0	Н	0	0	0	\vdash	ᆸ	N
	0	Н	Н	0	Н	0	0	Н	\vdash	0	ω
	0	0	Н	0	0	Н	0	0	0	0	4
:	0	Н	Н	0	Н	0	0	0	0	ᆸ	σ
•	0	0	Н	0	0	0	0	Н	0	0	6
	0	\vdash	\vdash	0	\vdash	0	0	0	0	0	7
	0	0	\vdash	\vdash	0	0	0	0	\vdash	0	ω
	0	Н	Н	0	0	0	0	0	0	Н	9
	:	:	:	:	:	:	:	:	:	:	:

30

Set-up of Example 8.31:

- Start with list of all subsets of N: A_0, A_1, A_2, \ldots each one associated with specific element of N (namely i)
- Ŋ Define another subset A by: $i \in A \iff i \notin A_i$
- Conclusion: for all i, $A \neq A_i$

ω Hence, there are uncountably many subsets of $\ensuremath{\mathbb{N}}$ Hence, contradiction

32

Set-up of constructing language that is not RE:

- Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0),L(T_1),L(T_2),\ldots$ each one associated with specific element of $\{0,1\}^*$
- Ν Define another language L by: $x \in L \iff x \notin \text{(language that } x \text{ is }$ associated with)
- ω

Conclusion: for all $i, L \neq L(T_i)$ Hence, L is not RE

33

34

:	$L(T_9)$	$L(T_8)$	$L(T_7)$	$L(T_6)$	$L(T_5)$	$L(T_4)$	$L(T_3)$	$L(T_2)$	$L(T_1)$	$L(T_0)$	
-	0	0	1	0	0	0	0	1	0	1	$e(T_0)$
	0	1	1	0	0	0	0	0	1	0	$e(T_1)$
	0	0	1	0	1	0	0	0	1	1	$e(T_2)$
	0	1	1	0	1	0	0	1	1	0	$e(T_3)$
	0	0	1	0	0	1	0	0	0	0	$e(T_4)$
:	0	1	1	0	1	0	0	0	0	1) e(T ₅) e(
	0	0	1	0	0	0	0	1	0	0	$e(T_6)$
	0	1	1	0	Н	0	0	0	0	0	$e(T_7)$
	0	0	1	1	0	0	0	0	1	0	$e(T_8)$
	0	1	1	0	0	0	0	0	0	1	$e(T_9)$

A slide from lecture 4:

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string
- $w\in\{0,1\}^*$, whether w is a legitimate value of e. 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z. 3. If w=e(T) or w=e(z), there should be an algorithm for

NSA

Hence, NSA is not recursively enumerable

 $L(T_0) \\ L(T_1) \\ L(T_2) \\ L(T_3) \\ L(T_3) \\ L(T_4) \\ L(T_5) \\ L(T_6) \\ L(T_7) \\ L$

00100010

0 0 1 0 1 0 0 0 1

011010011

0110100

 (T_6)

 $\mathbb{E}(T_7)$

01100000

36

85

Set-up of constructing language NSA that is not RE:

- Ľ Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0), L(T_1), L(T_2)$, (namely $e(T_i)$) each one associated with specific element of $\{0,1\}^*$ (namely $_{\rho}(T^{(1)})$)
- Ņ Define another language NSA by $e(T_i) \in NSA \iff e(T_i) \notin L(T_i)$
- ω Conclusion: for all i, $NSA \neq L(T_i)$ Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

- Start with collection of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $\{L(T)\,|\,$ TM $T\}$ (namely e(T)) each one associated with specific element of $\{0,1\}^*$
- Ņ Define another language NSA by $e(T) \in NSA$ $\iff e(T) \notin L(T)$
- Hence, NSA is not RE

Conclusion: for all TM T, $NSA \neq L(T)$

ω

Set-up of constructing language ${\cal L}$ that is not RE:

- Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^*$): $L(T_0),L(T_1),L(T_2),\ldots$ each one associated with specific element of $\{0,1\}^*$ (namely x_i)
- N Define another language \boldsymbol{L} by $x_i \notin L(T_i)$
- ω Conclusion: for all i, $L \neq L(T_i)$ Hence, L is not RE

Every infinite list x_0, x_1, x_2, \ldots of different elements of $\{0, 1\}^*$ yields language L that is not RE

Definition 9.1. The Languages NSA and SA

Let

NSA||Ш $\{e(T)\mid T \text{ is a TM, and } e(T)\notin L(T)\}$ $\{e(T)\mid T \text{ is a TM, and } e(T)\in L(T)\}$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 4:

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string
- $w \in \{0,1\}^*$, whether w is a legitimate value of e. 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z. 3. If w = e(T) or w = e(z), there should be an algorithm for

41

42

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that SA is recursively enumerable.

43

Decision problem: problem for which the answer is 'yes' or 'no':

Given is it true that ...?

yes-instances of a decision problem: instances for which the answer is 'yes'

no-instances of a decision problem: instances for which the answer is 'no'

44

Decision problems

Given an undirected graph G=(V,E) does G contain a Hamiltonian path?

Given a list of integers x_1, x_2, \ldots, x_n is the list sorted?

45

46

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. . . .

Self-Accepting: Given a TM T, does T accept the string e(T)?

Three languages corresponding to this problem:
1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. E': strings not representing instances

For general decision problem P, an encoding e of instances I as strings e(I) over alphabet Σ is called reasonable, if

- 1. there is algorithm to decide 2. e is injective 3. string e(I) can be decoded there is algorithm to decide if string over Σ is encoding e(I)

A slide from lecture 4:

Some Crucial features of any encoding function e:

- 1. It should be possible to decide algorithmically, for any string $w \in \{0,1\}^*$, whether w is a legitimate value of e.
 2. A string w should represent at most one Turing machine with a given input alphabet Σ , or at most one string z.
 3. If w = e(T) or w = e(z), there should be an algorithm for decoding w.

For general decision problem ${\cal P}$ and reasonable encoding e,

$$\begin{array}{lll} Y(P) &=& \{e(I) \mid I \text{ is yes-instance of } P\} \\ N(P) &=& \{e(I) \mid I \text{ is no-instance of } P\} \\ E(P) &=& Y(P) \cup N(P) \end{array}$$

$$E(P) = Y(P) \cup N(P)$$

E(P) must be recursive

50