Fundamentele Informatica 3
voorjaar 2014
http://www.liacs.nl/home/rvvliet/£i3/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl

college 8, 31 maart 2014

8. Recursively Enumerable Languages
8.5. Not Every Language is Recursively Enumerable

9. Undecidable Problems
9.1. A Language That Can't Be Accepted,
and a Problem That Can't Be Decided

A slide from lecture 7

Chomsky hierarchy

3| reg. languages | reg. grammar FA reg. expression
2 | cf. languages | cf. grammar PDA
1| cs. languages | cs. grammar LBA
0 | re. languages unrestr. grammar | TM
S3C 85 C85CRCS
(modulo A)

From Fundamentele Informatica 1:

Definition 8.23.
A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if
there is a bijection f: A — B.

A is larger than B if some subset of A is the same size as B but
A itself is not.

Theorem 8.25.
Every infinite set has a countably infinite subset,
and every subset of a countable set is countable.

Proof. ..

(proof of second claim is Exercise 8.35...)

Huiswerkopgave 2,
inleverdatum 1 april 2014, 13:45 uur

8.5. Not Every Language
is Recursively Enumerable

From Fundamentele Informatica 1:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a
bijection f: N — A, or a list ag,ay,... of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.

Example 8.26. The Set N x N is Countable

NxN={(i,5) |1i,j € N}
although N x N looks much bigger than N

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

Example 8.28.
A Countable Union of Countable Sets Is Countable

S
=0

Same construction as in Example 8.26, but. . .

A slide from lecture 4

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 3, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for
decoding w.

A slide from lecture 4
Definition 7.33. An Encoding Function

Assign numbers to each state:
n(he) = 1, n(hr) = 2, n(qo) = 3, n(q) > 4 for other q € Q.

Assign numbers to each tape symbol:
n(a;) = i.

Assign numbers to each tape head direction:
n(R) =1, n(L) =2, n(S) =3.

Example 8.30. The Set of Turing Machines Is Countable
Let 7(X) be set of Turing machines with input alphabet >
There is injective function e: 7(X) — {0,1}*

(e is encoding function)

Hence (...), set of recursively enumerable languages is countable

Example 8.29. Languages Are Countable Sets

Two ways to list =*

10

A slide from lecture 4
Assumptions:
1. Names of the states are irrelevant.

2. Tape alphabet I' of every Turing machine T is subset
of infinite set S = {a1,a5,as,...}, where a; = A.

12

A slide from lecture 4
Definition 7.33. An Encoding Function (continued)

For each move m of T of the form §(p,o) = (q,7, D)
e(m) = 17Po17(0)p17(@Dg17(M1(P)g

We list the moves of 7' in some order as my,mo,...,my, and we
define

e(T) = e(m1)0e(m2)0...0e(my)0

If 2 = 2125...2; is a string, where each z; € S,

e(z) = 01"(1)o1(=2)0 .. 017(=)o

14

Exercise 8.41.

For each case below, determine whether the given set is count-
able or uncountable. Prove your answer.

a. The set of all three-element subsets of N.

b. The set of all finite subsets of N.

16

Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}* are the same size,
there are uncountably many languages over {0, 1}

Example 8.31. The Set 2N Is Uncountable (continued)

A={ieN|igA}

A9 = {0,2,5,9,...}
A = {1,2,3,8,12,...}
Ay = {0,3,6}

bw = S

Ag = {4}

As = {2,3,5,7,11,...}
Ag = {8,16,24,...}
A7 = N

Ag = {1,3,5,7,9,...}
Ag = {neN|n>12}

)
,16,24,...}

OO+ OO0OO0OO0OrOoOROo
O OOOOOH O
OO O OOOHRKFN
OrHrORrOOrKFEOW
OO+ OOHOOOOM
OrHrrHrOHOOOOHrWM
OOoO+rHrOOOO+HOOO
OrHORrOOOOOoON
OO+HHOOOOHR O
O HFHOOOOOOH©

A=1{2,3,6,8,9,...}

o
o
=
[
o
o
=
o
=
[

Hence, there are uncountably many subsets of N.
21

Exercise 8.38.

Show that is S is uncountable and T' is countable, then S —T is
uncountable.

Suggestion: proof by contradiction.

23

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,
i.e., every list Ag, A1, Ao, ... of subsets of N leaves out at least
one.

Take
A={ieN|i¢ A;}
18

01234567289
Ap=1{0,2,5,9,...} 1010010001
A;=4{1,2,3,8,12,...}/0 1 1 1 0 0 0 010
A ={0,3,6} 1001001000
Az =10 000O0O0OOOOODO
Ayg = {4} 0000100O0O0CO
As ={2,3,5,7,11,...}|]0 0 1 1 0 1 0 1 0 O
Ag = {8,16,24,...} 00000O0OO0OOT1O0
A7 =N 1111111111
Ag=4{1,3,5,7,9,...} |01 01010101
Ag={neN|n>12} |lO O 00O 0O 0O0OO0O

20

Theorem 8.32. Not all languages are recursively enumerable.
In fact, the set of languages over {0,1} that are not recursively
enumerable is uncountable.

Proof. ..

(including Exercise 8.38)

22

Theorem 8.25.
Every infinite set has a countably infinite subset,
and every subset of a countable set is countable.

Proof. ..

(proof of second claim is Exercise 8.35...)

24

9. Undecidable Problems

9.1. A Language
That Can’'t Be Accepted,
and a Problem That Can’t Be Decided

25

Example 8.31. The Set 2V Is Uncountable

Hence, because N and {0, 1}* are the same size,
there are uncountably many languages over {0,1}

27

Example 8.31. The Set 2N Is Uncountable (continued)

A={ieN|i¢ A}

Ay = {0,2,5,9,...}
A = {1,2,3,8,12,..}
Ay = {0,3,6}

}w =0

Ag = {4}

As = {2,3,5,7,11,...}
Ag = {8,16,24,...}
A7 = N

Ag = {1,3,5,7,9,...}
Ag = {neN|n>12}

29

01234567829
Ap=1{0,2,5,9,.. } 1010010001
A1 =1{1,2,3,8,12,...1]/0 11 1 00 00 1 0
A> = {0,3,6} 1001001000
A3 =10 0000D00O0O0GOO
Ay = {4} 0000100000
As={2,3,5,7,11,...}/0 01 1 0 1 0 1 0 0
Ag=1{8,16,24,..} |00 00000010
A7 =N 1111111111
Ag=1{1,3,5,7,9,..} |0 101010101
Ag={neN|n>12} |0 0 0 0 0 0 0 0 0 O
A={236809.}) |0011001011

Hence, there are uncountably many subsets of N.
31

A slide from lecture 5:
Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet X~ accepts a language
LCx*,
if L(T) = L.

T decides L,
if T computes the characteristic function x : ©* — {0,1}

A language L is recursively enumerable,
if there is a TM that accepts L,

and L is recursive,
if there is @ TM that decides L.
26

Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,
i.e., every list Ag, A1, Ap,... of subsets of N leaves out at least
one.

Take
A={ieN|i¢ A}
28

01234567289
Ap=1{0,2,5,9,...} 1010010001
A;=1{1,2,3,8,12,...}|]0 1 1 1 0 00 010
Ap ={0,3,6} 1001001000
A3 =10 0000O0OO0OOOOCDO
Ag = {4} 0000100O0O0CO
As ={2,3,5,7,11,...}|]0 0 1 1 0 1 0 1 0 O
Ag = {8,16,24,...} 0O000OO0OOO0OOOT1IO
A7 =N 1111111111
Ag=1{1,3,5,7,9,...} |01 01 010101
Ag={neN|n>12} |O O OO O 0OO0OOO

30

Set-up of Example 8.31:

1. Start with list of all subsets of N: Ag, Ay, Ao, ...,
each one associated with specific element of N (namely i)

2. Define another subset A by:
1EA <= i¢ A

3. Conclusion: for all i, A # A;

Hence, contradiction
Hence, there are uncountably many subsets of N

32

Set-up of constructing language that is not RE:

e(To) e(T1) e(Tn) e(T3) e(Ts) e(Ts) e(Tp) e(T7) e(Tp) e(To)

1. Start with list of all RE languages over {0,1}
(which are subsets of {0,1}*): L(Tp),L(T1), L(T%),...
each one associated with specific element of {0,1}*
2. Define another language L by:
z € L <= =z ¢ (language that x is associated with)
3. Conclusion: for all i, L # L(T})
Hence, L is not RE
33
e(To) e(T1) e(To) e(T3) e(Tn) e(Ts) e(Te) e(T7) e(Tp) e(To)
L(Tp)| 1 0 1 0 0 1 0 0 0 1
L(Ty)| O 1 1 1 0 0 0 0 1 0
L(Ty)| 1 0 0 1 0 0 1 0 0 0
L(T3)| © 0 0 0 0 0 0 0 0 0
L(T3)| © 0 0 0 1 0 0 0 0 0
L(Ts)| © 0 1 1 0 1 0 1 0 0
L(Tg)| O 0 0 0 0 0 0 0 1 0
L(Ty)| 1 1 1 1 1 1 1 1 1 1
L(Tg)| O 1 0 1 0 1 0 1 0 1
L(Tg)| © 0 0 0 0 0 0 0 0 0
NSA 0 0 1 1 0 0 1 0 1 1

Hence, NSA is not recursively enumerable.

35

Set-up of constructing language NSA that is not RE:

Start with list of all RE languages over {0,1}

(which are subsets of {0,1}*): L(Tp), L(T1), L(T»),...
each one associated with specific element of {0,1}*
(namely e(Ty))

Define another language NSA by:
e(T;) € NSA <= e(Ty) ¢ L(T3)

Conclusion: for all i, NSA #= L(T;)
Hence, NSA is not RE

37

Set-up of constructing language L that is not RE:

Every infinite list zg,z1,292,...

Start with list of all RE languages over {0,1}

(which are subsets of {0,1}*): L(Tp), L(T1), L(T%),. ..
each one associated with specific element of {0,1}*
(namely z;)

Define another language L by:
z, €L <= z; ¢ L(T;)

Conclusion: for all 4, L # L(T;)
Hence, L is not RE

of different elements of {0,1}*

yields language L that is not RE

39

L(To)
L(Ty)
L(T2)
L(T3)
L(Ty)
L(Ts)
L(Ts)
L(T7)
L(Tg)
L(Ty)

1 0 1 0 0 1 0 0 0 1
0 1 1 1 0 0 0 0 1 0
1 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0

34

A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string

w e

{0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet ¥, or at most one string z.

3.

If w = e(T) or w = e(z), there should be an algorithm for

decoding w.

36

Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over {0, 1}

(which are subsets of {0,1}*): {L(T)| T™M T}
each one associated with specific element of {0,1}*
(namely e(T))

2. Define another language NSA by:

e(T) € NSA < e(T) ¢ L(T)

3. Conclusion: for all TM T, NSA # L(T)

Hence, NSA is not RE

38

Definition 9.1. The Languages NSA and SA

Let

NSA = {e(T)| Tisa TM, and e(T) ¢ L(T)}
SA = {e(T)| Tisa TM, and e(T) € L(T)}

(NSA and SA are for “non-self-accepting” and “self-accepting.”)

40

A slide from lecture 4:

Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet X, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for
decoding w.

41

Exercise 9.2.

Describe how a universal Turing machine could be used in the
proof that SA is recursively enumerable.

43

Decision problems

Given an undirected graph G = (V, E),
does G contain a Hamiltonian path?

Given a list of integers z1,xo,...,zn,
is the list sorted?

45

Self-Accepting: Given a TM T, does T accept the string e(7)?

Three languages corresponding to this problem:
1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E': strings not representing instances

47

Theorem 9.2. The language NSA is not recursively enumerable.
The language SA is recursively enumerable but not recursive.

Proof. ..

42

Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given ..., isit true that ...?

yes-instances of a decision problem:
instances for which the answer is ‘yes’

no-instances of a decision problem:

instances for which the answer is ‘no’

a4

Self-Accepting: Given a TM T, does T accept the string e(7)7

Three languages corresponding to this problem:
1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3.

46

For general decision problem P,
an encoding e of instances I as strings e(I) over alphabet <
is called reasonable, if

1. there is algorithm to decide if string over X is encoding e(I)

2. e is injective
3. string e(I) can be decoded

a8

A slide from lecture 4:

. . . For general decision problem P and reasonable encoding e,
Some Crucial features of any encoding function e:

Y(P) = {e(I)| I is yes-instance of P}
1. It should be possible to decide algorithmically, for any string N(P) = {e(I)| I is no-instance of P}
w € {0,1}*, whether w is a legitimate value of e. E(P) = Y(P)UN(P)

2. A string w should represent at most one Turing machine with
a given input alphabet X, or at most one string z.

3. If w = e(T) or w = e(z), there should be an algorithm for
decoding w.

E(P) must be recursive

49 50

