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A slide from lecture 7

Chomsky hierarchy

3 | reg. languages | reg. grammar FA reg. expression
2 | cf. languages cf. grammar PDA

1 | ¢cs. languages | ¢cs. grammar LBA

O | re. languages unrestr. grammar | TM

S3C S CS CRCS

(modulo A)



8.5. Not Every Language
IS Recursively Enumerable



From Fundamentele Informatica 1:

Definition 8.23.
A Set A of the Same Size as B or Larger Than B

Two sets A and B, either finite or infinite, are the same size if
there is a bijection f: A — B.

A is larger than B if some subset of A is the same size as B but
A itself is not.



From Fundamentele Informatica 1:

Definition 8.24.
Countably Infinite and Countable Sets

A set A is countably infinite (the same size as N) if there is a
bijection f : N — A, or a list ag,aq,... of elements of A such that

every element of A appears exactly once in the list.

A is countable if A is either finite or countably infinite.



Theorem 8.25.
Every infinite set has a countably infinite subset,
and every subset of a countable set is countable.

Proof. ..

(proof of second claim is Exercise 8.35...)



Example 8.26. The Set N x N is Countable

N x N={(i,5) |4,j € N}
although N x N looks much bigger than N

(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (38,3)



Example 8.28.
A Countable Union of Countable Sets Is Countable

o0
1=0

Same construction as in Example 8.26, but. ..



Example 8.29. Languages Are Countable Sets
OO .
LCX*= U >¢
i=0

Two ways to list >X*
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A slide from lecture 4
Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 22, or at most one string z.

3. If w=¢e(T) or w = e(z), there should be an algorithm for
decoding w.
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A slide from lecture 4
Assumptions:
1. Names of the states are irrelevant.

2. Tape alphabet ' of every Turing machine 7' is subset
of infinite set S = {a1,a2,a3,...}, where a1 = A.
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A slide from lecture 4
Definition 7.33. An Encoding Function

Assign numbers to each state:
n(he) = 1, n(hy) = 2, n(qp) = 3, n(q) > 4 for other q € Q.

Assign numbers to each tape symbol:

n(a;) = 1.

Assign numbers to each tape head direction:
n(R) =1, n(L) =2, n(S) = 3.
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A slide from lecture 4
Definition 7.33. An Encoding Function (continued)

For each move m of T of the form 6(p,0) = (¢, 7, D)
e(m) = 1"P)o17(@)g17(@)g1™(7)01™(P)g

We list the moves of T" in some order as mi1,mo,...,mg, and we
define

e(T) = e(m1)0e(m»-)0...0e(my)0

If 2= 2122...2; is a string, where each z; € S,

e(2) = 01™(x1)g17(22)g . 017(%)Q
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Example 8.30. The Set of Turing Machines Is Countable
Let 7(X) be set of Turing machines with input alphabet >
There is injective function e: 7(X) — {0, 1}*

(e is encoding function)

Hence (... ), set of recursively enumerable languages is countable
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EXxercise 8.41.

For each case below, determine whether the given set is count-
able or uncountable. Prove your answer.

a. The set of all three-element subsets of N.

b. The set of all finite subsets of N.
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}* are the same size,
there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,
i.e., every list Ag, A1, Ao, ... Of subsets of N leaves out at least

one.

Take
A={ieN|i¢g A}
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Example 8.31. The Set 2N Is Uncountable (continued)

A={ieN|i¢A)

Ao = {0,2,5,9,...}
Ay = {1,2,3,8,12,...}
A, = {0,3,6}

A3 = (

Ay = {4}

As = {2,3,5,7,11,...)
Ag = {8,16,24,...}
A7 = N

Ag = {1,3,5,7,9,...}
Ag = {neN|n>12}
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Hence, there are uncountably many subsets of N.



Theorem 8.32. Not all languages are recursively enumerable.

In fact, the set of languages over {0,1} that are not recursively
enumerable is uncountable.

Proof. ..

(including Exercise 8.38)
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EXxercise 8.38.

Show that is S is uncountable and 7' is countable, then S — T is
uncountable.

Suggestion: proof by contradiction.

23



Theorem 8.25.
Every infinite set has a countably infinite subset,
and every subset of a countable set is countable.

Proof. ..

(proof of second claim is Exercise 8.35...)
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9. Undecidable Problems

9.1. A Language
That Can’'t Be Accepted,
and a Problem That Can’t Be Decided
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A slide from lecture 5:
Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T" with input alphabet > accepts a language
L C X%,
if L(T) = L.

T decides L,
if T" computes the characteristic function xjy : ~* — {0,1}

A language L is recursively enumerable,
if there is a TM that accepts L,

and L is recursive,
if there is a TM that decides L.
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Example 8.31. The Set 2N Is Uncountable

Hence, because N and {0,1}* are the same size,
there are uncountably many languages over {0,1}
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Example 8.31. The Set 2N Is Uncountable (continued)

No list of subsets of N is complete,
i.e., every list Ag, A1, Ao, ... Of subsets of N leaves out at least

one.

Take
A={ieN|i¢g A}

28



Example 8.31. The Set 2N Is Uncountable (continued)

A={ieN|i¢A)

Ao = {0,2,5,9,...}
Ay = {1,2,3,8,12,...}
A, = {0,3,6}

A3 = (

Ay = {4}

As = {2,3,5,7,11,...)
Ag = {8,16,24,...}
A7 = N

Ag = {1,3,5,7,9,...}
Ag = {neN|n>12}
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Hence, there are uncountably many subsets of N.



Set-up of Example 8.31:

1. Start with list of all subsets of N: Ag, A1, Ao, ...,
each one associated with specific element of N (namely 1)

2. Define another subset A by:

3. Conclusion: for all 7, A %+ A;

Hence, contradiction
Hence, there are uncountably many subsets of N
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Set-up of constructing language that is not RE:

1. Start with list of all RE languages over {0, 1}
(which are subsets of {0,1}*): L(Typ),L(T1),L(1%),...
each one associated with specific element of {0,1}*

2. Define another language L by:
x € L <= =z ¢ (language that x is associated with)

3. Conclusion: for all 7, L # L(T;)
Hence, L is not RE
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e(Ty) e(T1) e(Tp) e(T3) e(Ty) e(Ts) e(Tp) e(T7) e(Tg) e(Ty)
L(Ty) | 1 0 1 0 0 1 0 0 0 1
L(Ty)| © 1 1 1 0 0 0 0 1 0
()| 1 0 0 1 0 0 1 0 0 0
L(T3)| © 0 0 0 0 0 0 0 0 0
L(Ty) | © 0 0 0 1 0 0 0 0 0
L(Ts)| O 0 1 1 0 1 0 1 0 0
L(Tg)| O 0 0 0 0 0 0 0 1 0
L(Ty)| 1 1 1 1 1 1 1 1 1 1
L(Ty)| O 1 0 1 0 1 0 1 0 1
L(Ty)| O 0 0 0 0 0 0 0 0 0
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e(Ty) e(T1) e(Tp) e(T3) e(Ty) e(Ts) e(T) e(T7) e(Tg) e(Ty)
L(Ty) | 1 0 1 0 0 1 0 0 0 1
L(Ty)| © 1 1 1 0 0 0 0 1 0
()| 1 0 0 1 0 0 1 0 0 0
L(T3)| O 0 0 0 0 0 0 0 0 0
L(Ty)| O 0 0 0 1 0 0 0 0 0
L(Ts)| O 0 1 1 0 1 0 1 0 0
L(Tg)| O 0 0 0 0 0 0 0 1 0
L(Ty)| 1 1 1 1 1 1 1 1 1 1
L(Ty)| O 1 0 1 0 1 0 1 0 1
L(Ty)| O 0 0 0 0 0 0 0 0 0
NSA | 0 0 1 1 0 0 1 0 1 1

Hence, NSA is not recursively enumerable.
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A slide from lecture 4:
Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 22, or at most one string z.

3. If w=¢e(T) or w = e(z), there should be an algorithm for
decoding w.
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Set-up of constructing language NSA that is not RE:

1. Start with list of all RE languages over {0, 1}
(which are subsets of {0,1}*): L(Ty), L(T71), L(15),...
each one associated with specific element of {0,1}*
(namely e(T3))

2. Define another language NSA by:
e(TZ) € NSA <— €(TZ) §§ L(TZ)

3. Conclusion: for all i, NSA # L(T;)
Hence, NSA is not RE
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Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over {0, 1}
(which are subsets of {0,1}*): {L(T)| TM T}
each one associated with specific element of {0,1}*
(namely e(T))

2. Define another language NSA by:
e(T) € NSA <> e(T) ¢ L(T)

3. Conclusion: for all TM T, NSA # L(T)
Hence, NSA is not RE
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Set-up of constructing language L that is not RE:

1. Start with list of all RE languages over {0, 1}
(which are subsets of {0,1}*): L(Ty), L(T1),L(T5),...
each one associated with specific element of {0,1}*
(namely x;)

2. Define another language L by:
x; € L < x; ¢ L(T;)

3. Conclusion: for all 7, L #= L(T;)
Hence, L is not RE

Every infinite list zg,x1,x5,... Of different elements of {0,1}*
yields language L that is not RE
39



Definition 9.1. The Languages NSA and SA

Let

NSA
SA

{e(T)| T isa TM, and e(T) ¢ L(T)}
{e(T) | Tisa TM, and e(T) € L(T)}

(NSA and SA are for “non-self-accepting” and ‘“self-accepting.”)
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A slide from lecture 4:
Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 22, or at most one string z.

3. If w=¢e(T) or w = e(z), there should be an algorithm for
decoding w.
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Theorem 9.2. The language NSA is not recursively enumerable.
The language SA is recursively enumerable but not recursive.

Proof. ..
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Exercise 9.2.

Describe how a universal Turing machine could be used in the
proof that SA is recursively enumerable.
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Decision problem: problem for which the answer is ‘yes’ or ‘no’:

Given ..., is it true that ...7

yes-instances of a decision problem:
instances for which the answer is ‘yes’

no-instances of a decision problem:
instances for which the answer is ‘no’

44



Decision problems

Given an undirected graph G = (V, E),
does G contain a Hamiltonian path?

Given a list of integers x1,xo,...,xn,
is the list sorted?
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Self~Accepting: Given a TM T, does T accept the string e(71")7?

Three languages corresponding to this problem:
1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. ...
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Self-Accepting: Given a TM T, does T accept the string e(7T")7?

Three languages corresponding to this problem:
1. SA: strings representing yes-instances

2. NSA: strings representing no-instances

3. E’: strings not representing instances

a7



For general decision problem P,
an encoding e of instances I as strings e(l) over alphabet X

is called reasonable, if
1. there is algorithm to decide if string over X is encoding e([)

2. e IS injective
3. string e(I) can be decoded
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A slide from lecture 4:
Some Crucial features of any encoding function e:

1. It should be possible to decide algorithmically, for any string
w € {0,1}*, whether w is a legitimate value of e.

2. A string w should represent at most one Turing machine with
a given input alphabet 22, or at most one string z.

3. If w=¢e(T) or w = e(z), there should be an algorithm for
decoding w.
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For general decision problem P and reasonable encoding e,

Y(P) = {e(l)]| I is yes-instance of P}
N(P) = {e(l)| I is no-instance of P}
E(P) = Y(P)UN(P)

E(P) must be recursive

50



