## Fundamentele Informatica 3

voorjaar 2014<br>http://www.liacs.nl/home/rvvliet/fi3/<br>Rudy van Vliet<br>kamer 124 Snellius, tel. 071-527 5777<br>rvvliet(at)liacs(dot)nl<br>college 8, 31 maart 2014<br>8. Recursively Enumerable Languages<br>8.5. Not Every Language is Recursively Enumerable<br>9. Undecidable Problems<br>9.1. A Language That Can't Be Accepted, and a Problem That Can't Be Decided

Huiswerkopgave 2,
inleverdatum 1 april 2014, 13:45 uur

A slide from lecture 7

Chomsky hierarchy

| 3 | reg. languages | reg. grammar | FA | reg. expression |
| :--- | :--- | :--- | :--- | :--- |
| 2 | cf. languages | cf. grammar | PDA |  |
| 1 | cs. languages | cs. grammar | LBA |  |
| 0 | re. languages | unrestr. grammar | TM |  |

$\mathcal{S}_{3} \subseteq \mathcal{S}_{2} \subseteq \mathcal{S}_{1} \subseteq \mathcal{R} \subseteq \mathcal{S}_{0}$
(modulo $\wedge$ )

### 8.5. Not Every Language is Recursively Enumerable

From Fundamentele Informatica 1:

Definition 8.23.

## A Set $A$ of the Same Size as $B$ or Larger Than $B$

Two sets $A$ and $B$, either finite or infinite, are the same size if there is a bijection $f: A \rightarrow B$.
$A$ is larger than $B$ if some subset of $A$ is the same size as $B$ but $A$ itself is not.

From Fundamentele Informatica 1:

Definition 8.24.
Countably Infinite and Countable Sets

A set $A$ is countably infinite (the same size as $\mathbb{N}$ ) if there is a bijection $f: \mathbb{N} \rightarrow A$, or a list $a_{0}, a_{1}, \ldots$ of elements of $A$ such that every element of $A$ appears exactly once in the list.
$A$ is countable if $A$ is either finite or countably infinite.

Theorem 8.25.
Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

```
Proof...
(proof of second claim is Exercise 8.35...)
```


## Example 8.26. The Set $\mathbb{N} \times \mathbb{N}$ is Countable

$$
\mathbb{N} \times \mathbb{N}=\{(i, j) \mid i, j \in \mathbb{N}\}
$$

although $\mathbb{N} \times \mathbb{N}$ looks much bigger than $\mathbb{N}$

$$
\begin{array}{lllll}
(0,0) & (0,1) & (0,2) & (0,3) & \ldots \\
(1,0) & (1,1) & (1,2) & (1,3) & \ldots \\
(2,0) & (2,1) & (2,2) & (2,3) & \ldots \\
(3,0) & (3,1) & (3,2) & (3,3) & \ldots
\end{array}
$$

## Example 8.28.

A Countable Union of Countable Sets Is Countable

$$
S=\bigcup_{i=0}^{\infty} S_{i}
$$

Same construction as in Example 8.26, but...

Example 8.29. Languages Are Countable Sets

$$
L \subseteq \Sigma^{*}=\bigcup_{i=0}^{\infty} \Sigma^{i}
$$

Two ways to list $\Sigma^{*}$

A slide from lecture 4

Some Crucial features of any encoding function $e$ :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether $w$ is a legitimate value of $e$.
2. A string $w$ should represent at most one Turing machine with
a given input alphabet $\Sigma$, or at most one string $z$.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding $w$.

A slide from lecture 4

## Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet $\Gamma$ of every Turing machine $T$ is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move $m$ of $T$ of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of $T$ in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

Example 8.30. The Set of Turing Machines Is Countable

Let $\mathcal{T}(\Sigma)$ be set of Turing machines with input alphabet $\Sigma$ There is injective function $e: \mathcal{T}(\Sigma) \rightarrow\{0,1\}^{*}$ ( $e$ is encoding function)

Hence (. . . ), set of recursively enumerable languages is countable

## Exercise 8.41.

For each case below, determine whether the given set is countable or uncountable. Prove your answer.
a. The set of all three-element subsets of $\mathbb{N}$.
b. The set of all finite subsets of $\mathbb{N}$.

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb{N}$ and $\{0,1\}^{*}$ are the same size, there are uncountably many languages over $\{0,1\}$

## Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of $\mathbb{N}$ is complete, i.e., every list $A_{0}, A_{1}, A_{2}, \ldots$ of subsets of $\mathbb{N}$ leaves out at least one.

Take

$$
A=\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\}
$$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$
\begin{aligned}
A & =\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\} \\
A_{0} & =\{0,2,5,9, \ldots\} \\
A_{1} & =\{1,2,3,8,12, \ldots\} \\
A_{2} & =\{0,3,6\} \\
A_{3} & =\emptyset \\
A_{4} & =\{4\} \\
A_{5} & =\{2,3,5,7,11, \ldots\} \\
A_{6} & =\{8,16,24, \ldots\} \\
A_{7} & =\mathbb{N} \\
A_{8} & =\{1,3,5,7,9, \ldots\} \\
A_{9} & =\{n \in \mathbb{N} \mid n>12\}
\end{aligned}
$$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{0}=\{0,2,5,9, \ldots\}$ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | $\ldots$ |
| $A_{1}=\{1,2,3,8,12, \ldots\}$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | $\ldots$ |
| $A_{2}=\{0,3,6\}$ | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $\ldots$ |
| $A_{3}=\emptyset$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $A_{4}=\{4\}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $A_{5}=\{2,3,5,7,11, \ldots\}$ |  |  |  |  |  |  |  |  |  |  |  |
| $A_{6}=\{8,16,24, \ldots\}$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | $\ldots$ |
| $A_{7}=\mathbb{N}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | $\ldots$ |
| $A_{8}=\{1,3,5,7,9, \ldots\}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\ldots$ |
| $A_{9}=\{n \in \mathbb{N} \mid n>12\}$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | $\ldots$ |
| $\quad \cdots$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $\quad \cdots$ |  |  |  |  | $\cdots$ |  |  |  |  |  |  |

$$
\begin{array}{l|lllllllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\hline A_{0}=\{0,2,5,9, \ldots\} \\
A_{1}=\{1,2,3,8,12, \ldots\} & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \ldots \\
A_{2}=\{0,3,6\} & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
A_{3}=\emptyset & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
A_{4}=\{4\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{5}=\{2,3,5,7,11, \ldots\} \\
A_{6}=\{8,16,24, \ldots\} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{7}=\mathbb{N} & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & \ldots \\
A_{8}=\{1,3,5,7,9, \ldots\} \\
A_{9}=\{n \in \mathbb{N} \mid n>12\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\hline A=\{2,3,6,8,9, \ldots\} & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \ldots
\end{array}
$$

Hence, there are uncountably many subsets of $\mathbb{N}$.

Theorem 8.32. Not all languages are recursively enumerable. In fact, the set of languages over $\{0,1\}$ that are not recursively enumerable is uncountable.

## Proof. . .

(including Exercise 8.38)

## Exercise 8.38.

Show that is $S$ is uncountable and $T$ is countable, then $S-T$ is uncountable.

Suggestion: proof by contradiction.

Theorem 8.25.
Every infinite set has a countably infinite subset, and every subset of a countable set is countable.

```
Proof...
(proof of second claim is Exercise 8.35...)
```


## 9. Undecidable Problems

9.1. A Language

That Can't Be Accepted,
and a Problem That Can't Be Decided

A slide from lecture 5:

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine $T$ with input alphabet $\Sigma$ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
$T$ decides $L$,
if $T$ computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$
A language $L$ is recursively enumerable, if there is a TM that accepts $L$,
and $L$ is recursive,
if there is a TM that decides $L$.

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable

Hence, because $\mathbb{N}$ and $\{0,1\}^{*}$ are the same size, there are uncountably many languages over $\{0,1\}$

## Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

No list of subsets of $\mathbb{N}$ is complete, i.e., every list $A_{0}, A_{1}, A_{2}, \ldots$ of subsets of $\mathbb{N}$ leaves out at least one.

Take

$$
A=\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\}
$$

Example 8.31. The Set $2^{\mathbb{N}}$ Is Uncountable (continued)

$$
\begin{aligned}
A & =\left\{i \in \mathbb{N} \mid i \notin A_{i}\right\} \\
A_{0} & =\{0,2,5,9, \ldots\} \\
A_{1} & =\{1,2,3,8,12, \ldots\} \\
A_{2} & =\{0,3,6\} \\
A_{3} & =\emptyset \\
A_{4} & =\{4\} \\
A_{5} & =\{2,3,5,7,11, \ldots\} \\
A_{6} & =\{8,16,24, \ldots\} \\
A_{7} & =\mathbb{N} \\
A_{8} & =\{1,3,5,7,9, \ldots\} \\
A_{9} & =\{n \in \mathbb{N} \mid n>12\}
\end{aligned}
$$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $A_{0}=\{0,2,5,9, \ldots\}$ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | $\ldots$ |
| $A_{1}=\{1,2,3,8,12, \ldots\}$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | $\ldots$ |
| $A_{2}=\{0,3,6\}$ | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | $\ldots$ |
| $A_{3}=\emptyset$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $A_{4}=\{4\}$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $A_{5}=\{2,3,5,7,11, \ldots\}$ |  |  |  |  |  |  |  |  |  |  |  |
| $A_{6}=\{8,16,24, \ldots\}$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | $\ldots$ |
| $A_{7}=\mathbb{N}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | $\ldots$ |
| $A_{8}=\{1,3,5,7,9, \ldots\}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | $\ldots$ |
| $A_{9}=\{n \in \mathbb{N} \mid n>12\}$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | $\ldots$ |
| $\quad \cdots$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\ldots$ |
| $\quad \cdots$ |  |  |  |  | $\cdots$ |  |  |  |  |  |  |

$$
\begin{array}{l|lllllllllll} 
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
\hline A_{0}=\{0,2,5,9, \ldots\} \\
A_{1}=\{1,2,3,8,12, \ldots\} & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \ldots \\
A_{2}=\{0,3,6\} & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
A_{3}=\emptyset & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & \ldots \\
A_{4}=\{4\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{5}=\{2,3,5,7,11, \ldots\} \\
A_{6}=\{8,16,24, \ldots\} & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \ldots \\
A_{7}=\mathbb{N} & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & \ldots \\
A_{8}=\{1,3,5,7,9, \ldots\} \\
A_{9}=\{n \in \mathbb{N} \mid n>12\} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \ldots \\
& 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & \ldots \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\hline A=\{2,3,6,8,9, \ldots\} & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & \ldots
\end{array}
$$

Hence, there are uncountably many subsets of $\mathbb{N}$.

Set-up of Example 8.31:

1. Start with list of all subsets of $\mathbb{N}$ : $A_{0}, A_{1}, A_{2}, \ldots$, each one associated with specific element of $\mathbb{N}$ (namely $i$ )
2. Define another subset $A$ by:
$i \in A \Longleftrightarrow i \notin A_{i}$
3. Conclusion: for all $i, A \neq A_{i}$ Hence, contradiction
Hence, there are uncountably many subsets of $\mathbb{N}$

Set-up of constructing language that is not RE:

1. Start with list of all RE languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$ ): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$
2. Define another language $L$ by:
$x \in L \Longleftrightarrow x \notin$ (language that $x$ is associated with)
3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, $L$ is not RE

|  | $e\left(T_{0}\right)$ | $e\left(T_{1}\right)$ | $e\left(T_{2}\right)$ | $e\left(T_{3}\right)$ | $e\left(T_{4}\right)$ | $e\left(T_{5}\right)$ | $e\left(T_{6}\right)$ | $e\left(T_{7}\right)$ | $e\left(T_{8}\right)$ | $e\left(T_{9}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L\left(T_{0}\right)$ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| $L\left(T_{1}\right)$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| $L\left(T_{2}\right)$ | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| $L\left(T_{3}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $L\left(T_{4}\right)$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $L\left(T_{5}\right)$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| $L\left(T_{6}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $L\left(T_{7}\right)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $L\left(T_{8}\right)$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| $L\left(T_{9}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\ldots$ |  |  |  |  |  | $\ldots$ |  |  |  |  |


|  | $e\left(T_{0}\right)$ | $e\left(T_{1}\right)$ | $e\left(T_{2}\right)$ | $e\left(T_{3}\right)$ | $e\left(T_{4}\right)$ | $e\left(T_{5}\right)$ | $e\left(T_{6}\right)$ | $e\left(T_{7}\right)$ | $e\left(T_{8}\right)$ | $e\left(T_{9}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L\left(T_{0}\right)$ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
| $L\left(T_{1}\right)$ | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| $L\left(T_{2}\right)$ | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| $L\left(T_{3}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $L\left(T_{4}\right)$ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $L\left(T_{5}\right)$ | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| $L\left(T_{6}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| $L\left(T_{7}\right)$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $L\left(T_{8}\right)$ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| $L\left(T_{9}\right)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\ldots$ |  |  |  |  |  | $\ldots$ |  |  |  |  |
| NSA | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |

Hence, NSA is not recursively enumerable.

A slide from lecture 4:

Some Crucial features of any encoding function $e$ :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether $w$ is a legitimate value of $e$.
2. A string $w$ should represent at most one Turing machine with a given input alphabet $\Sigma$, or at most one string $z$.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding $w$.

Set-up of constructing language NSA that is not RE:

1. Start with list of all RE languages over $\{0,1\}$ (which are subsets of $\left.\{0,1\}^{*}\right): L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e\left(T_{i}\right)$ )
2. Define another language NSA by:

$$
e\left(T_{i}\right) \in N S A \Longleftrightarrow e\left(T_{i}\right) \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, N S A \neq L\left(T_{i}\right)$

Hence, NSA is not RE

Set-up of constructing language NSA that is not RE:

1. Start with collection of all RE languages over $\{0,1\}$ (which are subsets of $\{0,1\}^{*}$ ): $\{L(T) \mid$ TM $T\}$ each one associated with specific element of $\{0,1\}^{*}$ (namely $e(T)$ )
2. Define another language NSA by:
$e(T) \in N S A \Longleftrightarrow e(T) \notin L(T)$
3. Conclusion: for all TM $T$, NSA $\neq L(T)$ Hence, NSA is not RE

Set-up of constructing language $L$ that is not RE:

1. Start with list of all $R E$ languages over $\{0,1\}$
(which are subsets of $\{0,1\}^{*}$ ): $L\left(T_{0}\right), L\left(T_{1}\right), L\left(T_{2}\right), \ldots$ each one associated with specific element of $\{0,1\}^{*}$ (namely $x_{i}$ )
2. Define another language $L$ by:

$$
x_{i} \in L \Longleftrightarrow x_{i} \notin L\left(T_{i}\right)
$$

3. Conclusion: for all $i, L \neq L\left(T_{i}\right)$ Hence, $L$ is not RE

Every infinite list $x_{0}, x_{1}, x_{2}, \ldots$ of different elements of $\{0,1\}^{*}$ yields language $L$ that is not RE

Definition 9.1. The Languages NSA and SA

Let

$$
\begin{aligned}
\text { NSA } & =\{e(T) \mid T \text { is a TM, and } e(T) \notin L(T)\} \\
S A & =\{e(T) \mid T \text { is a TM, and } e(T) \in L(T)\}
\end{aligned}
$$

(NSA and SA are for "non-self-accepting" and "self-accepting.")

A slide from lecture 4:

Some Crucial features of any encoding function $e$ :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether $w$ is a legitimate value of $e$.
2. A string $w$ should represent at most one Turing machine with a given input alphabet $\Sigma$, or at most one string $z$.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding $w$.

Theorem 9.2. The language NSA is not recursively enumerable. The language SA is recursively enumerable but not recursive.

## Proof. . .

## Exercise 9.2.

Describe how a universal Turing machine could be used in the proof that $S A$ is recursively enumerable.

Decision problem: problem for which the answer is 'yes' or 'no':

Given ... , is it true that ... ?
yes-instances of a decision problem:
instances for which the answer is 'yes'
no-instances of a decision problem:
instances for which the answer is 'no'

## Decision problems

Given an undirected graph $G=(V, E)$, does $G$ contain a Hamiltonian path?

Given a list of integers $x_{1}, x_{2}, \ldots, x_{n}$, is the list sorted?

Self-Accepting: Given a TM $T$, does $T$ accept the string $e(T)$ ?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. ...

Self-Accepting: Given a TM $T$, does $T$ accept the string $e(T)$ ?

Three languages corresponding to this problem:

1. SA: strings representing yes-instances
2. NSA: strings representing no-instances
3. $E^{\prime}$ : strings not representing instances

For general decision problem $P$, an encoding $e$ of instances $I$ as strings $e(I)$ over alphabet $\Sigma$ is called reasonable, if

1. there is algorithm to decide if string over $\Sigma$ is encoding $e(I)$
2. $e$ is injective
3. string $e(I)$ can be decoded

A slide from lecture 4:

Some Crucial features of any encoding function $e$ :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether $w$ is a legitimate value of $e$.
2. A string $w$ should represent at most one Turing machine with
a given input alphabet $\Sigma$, or at most one string $z$.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding $w$.

For general decision problem $P$ and reasonable encoding $e$,

$$
\begin{aligned}
& Y(P)=\{e(I) \mid I \text { is yes-instance of } P\} \\
& N(P)=\{e(I) \mid I \text { is no-instance of } P\} \\
& E(P)=Y(P) \cup N(P)
\end{aligned}
$$

$E(P)$ must be recursive

