Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. rvvliet(at)liacs(dot)nl 071-527 5777

college 7, 24 maart 2014

Recursively Enumerable Languages
 8.3. More General Grammars
 .4. Context-Sensitive Languages and The Chomsky Hierarchy

A slide from lecture 6

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple $G=(V,\Sigma,S,P)$, where V and Σ are disjoint sets of variables and terminals, respectively, S is an element of V called the start symbol, and P is a set of productions of the form

 $\alpha \rightarrow \beta$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and α contains at least one variable.

Ν

A slide from lecture 6

Theorem 8.13.

with L(T) = L(G). For every unrestricted grammar ${\it G}$, there is a Turing machine ${\it T}$

Proof.

- Move past input
- Simula
 Equal Simulate derivation in ${\cal G}$ on the tape of a Turing machine

A slide from lecture 6

following exception.

elements of the tape alphabet Γ

The initial configuration of M corresponding to input x is $q_0[x]$, with the symbol [in the leftmost square and the symbol] in the first square to the right of x.

During its computation, M is not permitted to replace either of these brackets or to move its tape head to the left of the [or to the right of the].

A slide from lecture 6

Definition 8.16. Context-Sensitive Grammars A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-decreasing. other words, every production is of the form $\alpha \to \beta$, where

 $|\beta| \ge |\alpha|$.

A language is a context-sensitive language (CSL) if it generated by a context-sensitive grammar. can be

ω

Definition 8.18. Linear-Bounded Automata A linear-bounded automaton (LBA) is a 5-tuple $M=(Q,\Sigma,\Gamma,q_0,\delta)$ that is identical to a nondeterministic Turing machine, with the

There are two extra tape symbols [and], assumed not to be

A slide from lecture

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is bounded automaton that accepts L.a linear-

A slide from lecture 6

8.4. and Context-Sensitive Languages the Chomsky Hierarchy

reg. languages	reg. grammar	FA	reg. expression
determ. cf. languages		DPDA	
cf. languages	cf. grammar	PDA	
cs. languages	cs. grammar	LBA	
re. languages	unrestr. grammar TM	T M	

Theorem 8.14.

For every Turing machine T with input alphabet Σ , there is an unrestricted grammar G generating the language $L(T)\subseteq \Sigma^*$.

Proof.

- Generate (every possible) input string for T (two copies),
- with additional $(\Delta\Delta)$'s and state. 2. Simulate computation of T for this input string as derivation
- in grammar (on second copy). 3. If T reaches accept state, reconstruct original input string.

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$

configuration
$$xqy = xqy\Delta = xqy\Delta\Delta$$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q,x\underline{y})$ or $(q,x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

Theorem 8.14. For every Turing machine T with input alphabet Σ , there is an unrestricted grammar G generating the language $L(T) \subseteq \Sigma^*$.

- **Proof.**1. Generate (every possible) input string for T (two copies), with additional $(\Delta\Delta)$'s and state.
 2. Simulate computation of T for this input string as derivation in grammar (on second copy).
 3. If T reaches accept state, reconstruct original input string.

Ad 2. Move
$$\delta(p,a) = (q,b,R)$$
 of T

Ad 3. 2. Move $\delta(p,a) = (q,b,R)$ of T yields production $p(\sigma_1 a) \to (\sigma_1 b)q$ 3. Propagate h_a all over the string $h_a(\sigma_1 \sigma_2) \to \sigma_1$, for $\sigma_1 \in \Sigma$ $h_a(\Delta \sigma_2) \to \Lambda$

11

Theorem 8.20. If $L\subseteq \Sigma^*$ is accepted by a linear-bounded automaton $M=(Q,\Sigma,\Gamma,q_0,\delta)$, then there is a context-sensitive grammar G generating $L-\{\Lambda\}$.

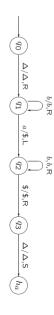
Proof. Much like proof of Theorem 8.14, except

- consider $h_a(\sigma_1\sigma_2)$ as a single symbol no additional ($\Delta\Delta$)'s needed incorporate [and] in leftmost/rightmost symbols of string

Chomsky hierarchy

	Μ	unrestr. grammar TM	0 re. languages	0
	LBA	cs. grammar	cs. languages	Н
	PDA	cf. grammar	cf. languages	2
reg. expression	FA	reg. grammar	3 reg. languages reg. grammar	ω

What about recursive languages?



10

automaton $M=(Q,\Sigma,\Gamma,g_0,\delta)$, then there is a context-sensitive grammar G generating $L=\{\Lambda\}$.

12

A slide from lecture 6

8.4. and Context-Sensitive Languages the Chomsky Hierarchy

	ΤM	unrestr. grammar TM	re. languages
	LBA	cs. grammar	cs. languages
	PDA	cf. grammar	cf. languages
	DPDA		determ. cf. languages
reg. expression	FA	reg. grammar	reg. languages

14

Theorem 8.22. Every context-sensitive language L is recursive.

15

A slide from lecture 6

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

```
Proof.

1. Create second tape track
2. Simulate derivation in G on track 2:

Write S on track 2

Repeat
a. Select production \alpha \to \beta
b. Select occurrence of \alpha on track 2 (if there is on c. Try to replace occurrence of \alpha by \beta until b. falls (caused by ...)

or c. falls (caused by ...); then reject
    ω
Equal
                                                                                                  one)
```

17

Theorem 8.22. Every context-sensitive language L is recursive.

Proof.

Let CSG G generate L Let LBA M accept strings generated by G (as in Theorem 8.19)

- Simulate M by NTM T, which
 inserts markers [and]
 also has two tape tracks
 maintains list of (different) strings generated so far
- a. Select production $\alpha \to \beta$ b. Select occurrence of α on track 2 (if there is one) c. Try to replace occurrence of α by β d. Compare new string to strings to the right of] until b. falls (caused by ...); then Equal or c. falls (caused by ...); then reject or d. finds match; then reject

18

A slide from lecture 5

Corollary.

If L is accepted by a nondeterministic TM T, and if there is no input string on which T can possibly loop forever, then L is recursive.

Chomsky hierarchy

υ	reg. languages reg. grammar	reg. grammar	FA
	cf. languages	cf. grammar	PDA
_	cs. languages	cs. grammar	LBA
0	0 re. languages	unrestr. grammar	H S

 $\mathcal{S}_3\subseteq\mathcal{S}_2\subseteq\mathcal{S}_1\subseteq\mathcal{R}\subseteq\mathcal{S}_0$

(modulo A)

20

19