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8. Recursively Enumerable Languages

8.3. More General Grammars

8.4. Context-Sensitive Languages and The Chomsky Hierarchy
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A slide from lecture 6

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple G = (V,Σ, S, P ), where V

and Σ are disjoint sets of variables and terminals, respectively,

S is an element of V called the start symbol, and P is a set of

productions of the form

α → β

where α, β ∈ (V ∪Σ)∗ and α contains at least one variable.
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A slide from lecture 6

Theorem 8.13.

For every unrestricted grammar G, there is a Turing machine T

with L(T ) = L(G).

Proof.

1. Move past input

2. Simulate derivation in G on the tape of a Turing machine

3. Equal
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A slide from lecture 6

Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar

in which no production is length-decreasing.

In other words, every production is of the form α → β, where

|β| ≥ |α|.

A language is a context-sensitive language (CSL) if it can be

generated by a context-sensitive grammar.
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A slide from lecture 6

Definition 8.18. Linear-Bounded Automata

A linear-bounded automaton (LBA) is a 5-tuple M = (Q,Σ,Γ, q0, δ)

that is identical to a nondeterministic Turing machine, with the

following exception.

There are two extra tape symbols [ and ], assumed not to be

elements of the tape alphabet Γ.

The initial configuration of M corresponding to input x is q0[x],

with the symbol [ in the leftmost square and the symbol ] in the

first square to the right of x.

During its computation, M is not permitted to replace either of

these brackets or to move its tape head to the left of the [ or to

the right of the ].
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A slide from lecture 6

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof. . .
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A slide from lecture 6

8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages reg. grammar FA reg. expression

determ. cf. languages DPDA

cf. languages cf. grammar PDA

cs. languages cs. grammar LBA

re. languages unrestr. grammar TM
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Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G

generating the language L(T ) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.
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A slide from lecture 3

Notation:

description of tape contents: xσy or xy

configuration xqy = xqy∆ = xqy∆∆

initial configuration corresponding to input x: q0∆x

In the third edition of the book, a configuration is denoted as

(q, xy) or (q, xσy) instead of xqy or xqσy.

This old notation is also allowed for Fundamentele Informatica 3.
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Theorem 8.14.

For every Turing machine T with input alphabet Σ,

there is an unrestricted grammar G
generating the language L(T ) ⊆ Σ∗.

Proof.

1. Generate (every possible) input string for T (two copies),

with additional (∆∆)’s and state.

2. Simulate computation of T for this input string as derivation

in grammar (on second copy).

3. If T reaches accept state, reconstruct original input string.

Ad 2. Move δ(p, a) = (q, b, R) of T
yields production p(σ1a) → (σ1b)q

Ad 3. Propagate ha all over the string

ha(σ1σ2) → σ1, for σ1 ∈ Σ

ha(∆σ2) → Λ
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Theorem 8.20. If L ⊆ Σ∗ is accepted by a linear-bounded

automaton M = (Q,Σ,Γ, q0, δ), then there is a context-sensitive

grammar G generating L− {Λ}.

Proof. . .
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Theorem 8.20. If L ⊆ Σ∗ is accepted by a linear-bounded

automaton M = (Q,Σ,Γ, q0, δ), then there is a context-sensitive

grammar G generating L− {Λ}.

Proof. Much like proof of Theorem 8.14, except

• consider ha(σ1σ2) as a single symbol

• no additional (∆∆)’s needed

• incorporate [ and ] in leftmost/rightmost symbols of string
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A slide from lecture 6

8.4. Context-Sensitive Languages
and the Chomsky Hierarchy

reg. languages reg. grammar FA reg. expression

determ. cf. languages DPDA

cf. languages cf. grammar PDA

cs. languages cs. grammar LBA

re. languages unrestr. grammar TM
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Chomsky hierarchy

3 reg. languages reg. grammar FA reg. expression

2 cf. languages cf. grammar PDA

1 cs. languages cs. grammar LBA

0 re. languages unrestr. grammar TM

What about recursive languages?
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Theorem 8.22. Every context-sensitive language L is recursive.

Proof. . .
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A slide from lecture 6

Theorem 8.19.

If L ⊆ Σ∗ is a context-sensitive language, then there is a linear-

bounded automaton that accepts L.

Proof.

1. Create second tape track

2. Simulate derivation in G on track 2:

Write S on track 2

Repeat

a. Select production α → β
b. Select occurrence of α on track 2 (if there is one)

c. Try to replace occurrence of α by β
until b. fails (caused by . . . )

or c. fails (caused by . . . ); then reject

3. Equal
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Theorem 8.22. Every context-sensitive language L is recursive.

Proof.

Let CSG G generate L
Let LBA M accept strings generated by G (as in Theorem 8.19)

Simulate M by NTM T , which
• inserts markers [ and ]
• also has two tape tracks
• maintains list of (different) strings generated so far

a. Select production α → β
b. Select occurrence of α on track 2 (if there is one)
c. Try to replace occurrence of α by β
d. Compare new string to strings to the right of ]
until b. fails (caused by . . . ); then Equal
or c. fails (caused by . . . ); then reject
or d. finds match; then reject
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A slide from lecture 5

Corollary.

If L is accepted by a nondeterministic TM T , and if there is no

input string on which T can possibly loop forever,

then L is recursive.

Proof. . .
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Chomsky hierarchy

3 reg. languages reg. grammar FA reg. expression

2 cf. languages cf. grammar PDA

1 cs. languages cs. grammar LBA

0 re. languages unrestr. grammar TM

S3 ⊆ S2 ⊆ S1 ⊆ R ⊆ S0

(modulo Λ)
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