Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 6, 17 maart 2014

Recursively Enumerable Languages
 8.3. More General Grammars
 8.4. Context-Sensitive Languages and The Chomsky Hierarchy

A slide from lecture 1

FI2: Pumping Lemma for CFLs

A slide from lecture 5

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language $L\subseteq \Sigma^*,$ if L(T)=L.

T decides L, if T computes the characteristic function $\chi_L: \Sigma^* \to \{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,

and L is recursive, if there is a TM that decides L.

Ν

A slide from lecture 1 FI2: Pumping Lemma for CFLs

8.3. More General Grammars

re. languages	cf. languages	determ. cf. languages	reg. languages
unrestr. grammar	cf. grammar		reg. grammar
M	PDA	DPDA	FA
			reg. expression

Definition 8.10. Unrestricted grammars

An unrestricted grammar is a 4-tuple $G=(V,\Sigma,S,P)$, where V and Σ are disjoint sets of variables and terminals, respectively, S is an element of V called the start symbol, and P is a set of productions of the form

$$\alpha \to \beta$$

where $\alpha, \beta \in (V \cup \Sigma)^*$ and α contains at least one variable.

Notation as for CFGs:

$$\alpha \Rightarrow_{G}^{*} \beta$$

$$L(G) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}$$

but...

Example 8.12. A Grammar Generating $\{a^nb^nc^n \mid n \geq 1\}$

Example 8.12. A Grammar Generating $\{a^nb^nc^n\mid n\geq 1\}$

$$S o SABC \mid LABC$$

$$BA \rightarrow AB \quad CB \rightarrow BC \quad CA \rightarrow AC$$

$$aA \rightarrow aa \quad aB \rightarrow ab \quad bB \rightarrow bb \quad bC \rightarrow bc \quad cC \rightarrow cc$$

 $LA \rightarrow a$

 $aA \rightarrow aa$

 $aB \rightarrow ab$

 $bB \to bb \quad bC \to bc$

 $\{a, a^2, a^4, a^8, a^{16}, \ldots\} = \{a, aa, aaaa, aaaaaaaaa, aa$

 $aaaaa, \ldots \}$

Example 8.11. A Grammar Generating $\{a^{2^k} \mid k \in \mathbb{N}\}$

10

9

Example 8.11. A Grammar Generating $\{a^{2^k} \mid k \in \mathbb{N}\}$

 $\rightarrow LaR$

$$L \to LD$$
 $Da \to aaD$ $DR \to R$

 $R \rightarrow \Lambda$

 $L \rightarrow \wedge$

11

Example.

An Unrestricted Grammar Generating $XX = \{xx \mid x \in \{a,b\}^*\}$

12

Example.

An Unrestricted Grammar Generating $XX = \{xx \mid x \in \{a,b\}^*\}$

$$S \to aAS \mid bBS \mid M$$

$$Aa \rightarrow aA$$
 $Ab \rightarrow bA$ $Ba \rightarrow aB$ $Bb \rightarrow bB$

$$AM \to Ma \quad BM \to Mb \quad M \to \Lambda$$

Move past input

Proof.

Theorem 8.13. For every unrestricted grammar G, there is a Turing machine T with L(T) = L(G).

2. Simulate derivation in ${\cal G}$ on the tape of a Turing machine 3. Equal

14

For every unrestricted grammar G, there is a Turing machine T with L(T) = L(G). Theorem 8.13.

(The second part of) the construction from Theorem 8.13 to obtain a TM simulating a derivation in the unrestricted grammar

with productions

 $S \to aBS \mid \mathsf{A} \quad aB \to Ba$

 $Ba \rightarrow aB$

 $B \rightarrow b$

Example.

- Proof.

 1. Mov

 2. Sim
- Move past input Simulate derivation in ${\cal G}$ on the tape Write ${\cal S}$ on tape of a Turing machine:

Repeat

- <u></u>Б 9 Select production $\alpha \to \beta$ Select occurrence of α (if there is one)
- c. Replace occurrence of α by β until b. fails (caused by ...)
- ω Equal

See next slide N.B.:

- In next slide, we simulate application of arbitrary production by • first moving to arbitrary position in current string (at q_2) • only then selecting (and applying) a possible production

exam This implementation of the construction must be known for the

15

8.4. Context-Sensitive Languages and the Chomsky Hierarchy

re. languages ur	cs. languages cs	cf. languages cf	determ. cf. languages	reg. languages re
unrestr. grammar TM	cs. grammar	cf. grammar		reg. grammar
I Z	LBA	PDA	DPDA	FA
				reg. expression

18

Definition 8.16. Context-Sensitive Grammars A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-decreasing. In other words, every production is of the form $\alpha \to \beta$, where $|\beta| \geq |\alpha|$.

generated by a context-sensitive grammar A language is a context-sensitive language (CSL) if it can be

 $SABC \mid LABC$

AB

 $CB \to BC$

CA

AC

Example 8.12. A Grammar Generating $\{a^nb^nc^n\mid n\geq 1\}$

 $LA \rightarrow$ $aA \rightarrow aa$ $aB \rightarrow ab$ $bB \rightarrow bb$ $bC \rightarrow bc$ $cC \rightarrow cc$

Not context-sensitive.

19

20

Example 8.17. A CSG Generating $L = \{a^nb^nc^n \mid n \geq 1\}$

$$S \to SABC \mid ABC$$

$$BA \to AB \quad CB \to BC \quad CA \to AC$$

$$\mathcal{A} \rightarrow a \quad aA \rightarrow aa \quad aB \rightarrow ab \quad bB \rightarrow bb \quad bC \rightarrow bc \quad cC \rightarrow cc$$

21

Example.

An Unrestricted Grammar Generating XX = $\{xx\mid x\in\{a,b\}^*\}$

$$S \to aAS \mid bBS \mid M$$

$$Aa \to aA \quad Ab \to bA \quad Ba \to aB \quad Bb \to bB$$

 $AM \rightarrow Ma$ $BM \to Mb$ $M \rightarrow \wedge$

Not context-sensitive

22

Definition 8.18. Linear-Bounded Automata A linear-bounded automaton (LBA) is a 5-tuple $M=(Q,\Sigma,\Gamma,q_0,\delta)$ that is identical to a nondeterministic Turing machine, with the following exception.

There are two extra tape symbols [and], assumed not to be elements of the tape alphabet $\Gamma.$

first square to the right of \boldsymbol{x} . The initial configuration of M corresponding to input x is $q_0[x]$, with the symbol [in the leftmost square and the symbol] in the

During its computation, ${\cal M}$ is not permitted to replace either of these brackets or to move its tape head to the left of the [or to the right of the].

Exercise 8.24.

Find a context-sensitive grammar generating the language

$$XX - \{\Lambda\} = \{xx \mid x \in \{a, b\}^* \text{ and } x \neq \Lambda\}$$

23

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

Proof...

25

26

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

- Proof.
 1. Create
 2. Simula
 3. Equal Create second tape track Simulate derivation in G on track 2

27

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except

- two tape tracks instead of move past inputreject also if we (want to) write on]

 $\begin{tabular}{lll} {\bf Alternative \ proof.} \\ {\bf Simulate \ derivation \ of \ string \ } x \ from \ S \ in \ reverse \ order \end{tabular}$

c.f., bottom-up parsing
Then one tape track is sufficient

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except
two tape tracks instead of move past input
reject also if we (want to) write on]

Theorem 8.19. If $L\subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

Proof.

- Create second tape track
 Simulate derivation in G on track 2:
 Write S on track 2

Repeat

- a. Select production $\alpha \to \beta$ b. Select occurrence of α on track 2 (if there is one) c. Try to replace occurrence of α by β until b. fails (caused by ...) then reject

Equal

28

ω

Exercise 8.27.

Show that if L is any recursively enumerable language, then L can be generated by a grammar in which the left side of every production is a string of one or more variables.

29