
Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 5, 3 maart 2014

7. Turing Machines

7.8. Universal Turing Machines

8. Recursively Enumerable Languages

8.1. Recursively Enumerable and Recursive

8.2. Enumerating a Language

1



Huiswerkopgave 1

Inleveren: dinsdag 4 maart 2014, 13:45 uur

2



A slide from lecture 4

Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine Tu that works

as follows. It is assumed to receive an input string of the form

e(T )e(z), where

• T is an arbitrary TM,

• z is a string over the input alphabet of T ,

• and e is an encoding function whose values are strings in {0,1}∗.

The computation performed by Tu on this input string satisfies

these two properties:

1. Tu accepts the string e(T )e(z) if and only if T accepts z.

2. If T accepts z and produces output y, then Tu produces output

e(y).

3



A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:

n(ha) = 1, n(hr) = 2, n(q0) = 3, n(q) ≥ 4 for other q ∈ Q.

Assign numbers to each tape symbol:

n(ai) = i.

Assign numbers to each tape head direction:

n(R) = 1, n(L) = 2, n(S) = 3.

4



A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form δ(p, σ) = (q, τ,D)

e(m) = 1n(p)01n(σ)01n(q)01n(τ)01n(D)0

We list the moves of T in some order as m1,m2, . . . ,mk, and we

define

e(T ) = e(m1)0e(m2)0 . . .0e(mk)0

If z = z1z2 . . . zj is a string, where each zi ∈ S,

e(z) = 01n(z1)01n(z2)0 . . .01n(zj)0

5



Simulation of TM T on input z by universal TM Tu

• Three tapes

1. e(T )

2. e(tape contents)

3. e(q)

• Initialize tapes

• Simulate

• Termination of T

– if no termination, . . .

– if reject (three types), . . .

– if accept, . . .

6



Example 7.34. A Sample Encoding of a TM

Exercise.

Suppose the three tapes of the universal Turing machine look

like this:

∆ 111010111101010 0 11110111011110111010 0
111101101111101110110 0 111101011111010110 0
11111011101111101110110 0 1111101010101110 0 ∆
∆10111011101101110110∆
∆11110∆

What will the three tapes look like after the next simulated

move?

What will the three tapes look like after the next next simulated

move?

7



reg. languages reg. grammar FA reg. expression

determ. cf. languages DPDA

cf. languages cf. grammar PDA

re. languages TM

8



8. Recursively Enumerable Languages

8.1. Recursively Enumerable and Recur-
sive

9



A slide from lecture 4

7.6. The Church-Turing Thesis

Turing machine is general model of computation.

Any algorithmic procedure that can be carried out at all

(by human computer, team of humans, electronic computer)

can be carried out by a TM.

(Alonzo Church, 1930s)

10



A slide from lecture 2

Example 7.14. The Characteristic Function of a Set

χL(x) =

{

1 if x ∈ L
0 if x /∈ L

From computing χL to accepting L

From accepting L to computing χL

11



Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language

L ⊆ Σ∗,

if L(T ) = L.

T decides L,

if T computes the characteristic function χL : Σ∗ → {0,1}

A language L is recursively enumerable,

if there is a TM that accepts L,

and L is recursive,

if there is a TM that decides L.

12



Theorem 8.2.

Every recursive language is recursively enumerable.

Proof. . .

13



Theorem 8.3.

If L ⊆ Σ∗ is accepted by a TM T that halts on every input string,

then L is recursive.

Proof. . .

14



Corollary.

If L is accepted by a nondeterministic TM T , and if there is no

input string on which T can possibly loop forever,

then L is recursive.

Proof. . .

15



A slide from lecture 4

Theorem 7.31.

For every nondeterministic TM T = (Q,Σ,Γ, q0, δ),
there is an ordinary (deterministic) TM T1 = (Q1,Σ,Γ1, q1, δ1)
with L(T1) = L(T ).

Proof. . .

&%
'$

&%
'$

- - -

@
@
@
@@R

?

�
�

�
�

�
�

�
�

�
�

�
�	

��

HHHHHHHY

�
�
���

�������*

@
@

@
@@I

hahr

Initialize
Tapes 2,3,4

Copy Input
1 → 3 Execute

Copy Sequence
2 → 4

Next
Sequence

Check
Tape 4

Erase
Tape 3

ha

hr

000 . . .0

not
000 . . .0

not allall

16



Theorem 8.4. If L1 and L2 are both recursively enumerable

languages over Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursively

enumerable.

Proof. . .

17



Exercise 8.2. Consider modifying the proof of Theorem 8.4 by

executing the two TMs sequentially instead of simultaneously.

Given TMs T1 and T2 accepting L1 and L2, respectively, and an

input string x, we start by making a second copy of x.

We execute T1 on the second copy; if and when this computation

stops, the tape is erased except for the original input, and T2 is

executed on it.

a. Is this approach feasible for accepting L1∪L2, thereby showing

that the union of recursively enumerable languages is recursively

enumerable? Why or why not?

b. Is this approach feasible for accepting L1 ∩L2, thereby show-

ing that the intersection of recursively enumerable languages is

recursively enumerable? Why or why not?

18



Exercise 8.1.

Show that if L1 and L2 are recursive languages,

then L1 ∪ L2 and L1 ∩ L2 are also.

19



Theorem 8.5. If L1 and L2 are both recursive languages over

Σ, then L1 ∪ L2 and L1 ∩ L2 are also recursive.

Proof. Exercise 8.1.

20



Theorem 8.6. If L is a recursive language over Σ, then its

complement L′ is also recursive.

Proof. . .

21



Theorem 8.7. If L is a recursively enumerable language,

and its complement L′ is also recursively enumerable,

then L is recursive

(and therefore, by Theorem 8.6, L′ is recursive).

Proof. . .

22



Corollary.

Let L be a recursively enumerable language.

Then

L′ is recursively enumerable,

if and only

if L is recursive.

23



Corollary.

There exist languages that are not recursively enumerable,

if and only if

there exist languages that are not recursive.

24



8.2. Enumerating a Language

25



Definition 8.8. A TM Enumerating a Language

Let T be a k-tape Turing machine for some k ≥ 1, and let

L ⊆ Σ∗. We say T enumerates L if it operates such that the

following conditions are satisfied.

1. The tape head on the first tape never moves to the left, and

no nonblank symbol printed on tape 1 is subsequently modified

or erased.

2. For every x ∈ L, there is some point during the operation of

T when tape 1 has contents

x1#x2# . . .#xn#x#

for some n ≥ 0, where the strings x1, x2, . . . , xn are also elements

of L and x1, x2, . . . , xn, x are all distinct. If L is finite, then nothing

is printed after the # following the last element of L.

26



Theorem 8.9. For every language L ⊆ Σ∗,

• L is recursively enumerable

if and only if there is a TM enumerating L,
• and L is recursive if and only if there is a TM that enumerates

the strings in L in canonical order (see Section 1.4).

In other words:

1. If there is a TM that accepts L, then there is a TM that

enumerates L.
2. If there is a TM that enumerates L, then there is a TM that

accepts L.
3. If there is a TM that decides L, then there is a TM that

enumerates L in canonical order.

4. If there is a TM that enumerates L in canonical order, then

there is a TM that decides L.

Proof. . .

27


