Fundamentele Informatica 3

voorjaar 2014
http://www.liacs.nl/home/rvvliet/fi3/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
college 5, 3 maart 2014
7. Turing Machines
7.8. Universal Turing Machines
8. Recursively Enumerable Languages
8.1. Recursively Enumerable and Recursive 8.2. Enumerating a Language

Huiswerkopgave 1

Inleveren: dinsdag 4 maart 2014, 13:45 uur

A slide from lecture 4

Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine T_{u} that works as follows. It is assumed to receive an input string of the form $e(T) e(z)$, where

- T is an arbitrary TM,
- z is a string over the input alphabet of T,
- and e is an encoding function whose values are strings in $\{0,1\}^{*}$.

The computation performed by T_{u} on this input string satisfies these two properties:

1. T_{u} accepts the string $e(T) e(z)$ if and only if T accepts z.
2. If T accepts z and produces output y, then T_{u} produces output $e(y)$.

A slide from lecture 4

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

A slide from lecture 4

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

Simulation of TM T on input z by universal TM T_{u}

- Three tapes

1. $e(T)$
2. e (tape contents)
3. $e(q)$

- Initialize tapes
- Simulate
- Termination of T
- if no termination, ...
- if reject (three types), ...
- if accept, ...

Example 7.34. A Sample Encoding of a TM
Exercise.
Suppose the three tapes of the universal Turing machine look like this:

```
\Delta 111010111101010 0 11110111011110111010 0
1111011011111011101100 1111010111110101100
11111011101111101110110 0 1111101010101110 0 D
\Delta10111011101101110110\Delta
\Delta11110\Delta
```

What will the three tapes look like after the next simulated move?
What will the three tapes look like after the next next simulated move?

reg. languages	reg. grammar	FA	reg. expression
determ. cf. languages		DPDA	
cf. languages	cf. grammar	PDA	
re. languages		TM	

8. Recursively Enumerable Languages

8.1. Recursively Enumerable and Recursive

A slide from lecture 4

7.6. The Church-Turing Thesis

Turing machine is general model of computation.

Any algorithmic procedure that can be carried out at all (by human computer, team of humans, electronic computer) can be carried out by a TM. (Alonzo Church, 1930s)

A slide from lecture 2

Example 7.14. The Characteristic Function of a Set

$$
\chi_{L}(x)= \begin{cases}1 & \text { if } x \in L \\ 0 & \text { if } x \notin L\end{cases}
$$

From computing χ_{L} to accepting L

From accepting L to computing χ_{L}

Definition 8.1. Accepting a Language and Deciding a Language

A Turing machine T with input alphabet Σ accepts a language
$L \subseteq \Sigma^{*}$,
if $L(T)=L$.
T decides L,
if T computes the characteristic function $\chi_{L}: \Sigma^{*} \rightarrow\{0,1\}$

A language L is recursively enumerable, if there is a TM that accepts L,
and L is recursive,
if there is a TM that decides L.

Theorem 8.2.
Every recursive language is recursively enumerable.

Proof. . .

Theorem 8.3.
If $L \subseteq \Sigma^{*}$ is accepted by a TM T that halts on every input string, then L is recursive.

Proof. . .

Corollary.

If L is accepted by a nondeterministic TM T, and if there is no input string on which T can possibly loop forever, then L is recursive.

Proof. . .

A slide from lecture 4

Theorem 7.31.

For every nondeterministic ТМ $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$, there is an ordinary (deterministic) $\top \mathrm{TM} T_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, q_{1}, \delta_{1}\right)$ with $L\left(T_{1}\right)=L(T)$.

Proof. . .

Theorem 8.4. If L_{1} and L_{2} are both recursively enumerable languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursively enumerable.

Proof. . .

Exercise 8.2. Consider modifying the proof of Theorem 8.4 by executing the two TMs sequentially instead of simultaneously. Given TMs T_{1} and T_{2} accepting L_{1} and L_{2}, respectively, and an input string x, we start by making a second copy of x.
We execute T_{1} on the second copy; if and when this computation stops, the tape is erased except for the original input, and T_{2} is executed on it.
a. Is this approach feasible for accepting $L_{1} \cup L_{2}$, thereby showing that the union of recursively enumerable languages is recursively enumerable? Why or why not?
b. Is this approach feasible for accepting $L_{1} \cap L_{2}$, thereby showing that the intersection of recursively enumerable languages is recursively enumerable? Why or why not?

Exercise 8.1.

Show that if L_{1} and L_{2} are recursive languages, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also.

Theorem 8.5. If L_{1} and L_{2} are both recursive languages over Σ, then $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are also recursive.

Proof. Exercise 8.1.

Theorem 8.6. If L is a recursive language over Σ, then its complement L^{\prime} is also recursive.

Proof. . .

Theorem 8.7. If L is a recursively enumerable language, and its complement L^{\prime} is also recursively enumerable, then L is recursive
(and therefore, by Theorem 8.6, L^{\prime} is recursive).
Proof. . .

Corollary.

Let L be a recursively enumerable language.
Then
L^{\prime} is recursively enumerable,
if and only
if L is recursive.

Corollary.

There exist languages that are not recursively enumerable, if and only if there exist languages that are not recursive.

8.2. Enumerating a Language

Definition 8.8. A TM Enumerating a Language
Let T be a k-tape Turing machine for some $k \geq 1$, and let $L \subseteq \Sigma^{*}$. We say T enumerates L if it operates such that the following conditions are satisfied.

1. The tape head on the first tape never moves to the left, and no nonblank symbol printed on tape 1 is subsequently modified or erased.
2. For every $x \in L$, there is some point during the operation of T when tape 1 has contents

$$
x_{1} \# x_{2} \# \ldots \# x_{n} \# x \#
$$

for some $n \geq 0$, where the strings $x_{1}, x_{2}, \ldots, x_{n}$ are also elements of L and $x_{1}, x_{2}, \ldots, x_{n}, x$ are all distinct. If L is finite, then nothing is printed after the \# following the last element of L.

Theorem 8.9. For every language $L \subseteq \Sigma^{*}$,

- L is recursively enumerable if and only if there is a TM enumerating L,
- and L is recursive if and only if there is a TM that enumerates the strings in L in canonical order (see Section 1.4).

In other words:

1. If there is a TM that accepts L, then there is a TM that enumerates L.
2. If there is a TM that enumerates L, then there is a TM that accepts L.
3. If there is a TM that decides L, then there is a TM that enumerates L in canonical order.
4. If there is a TM that enumerates L in canonical order, then there is a TM that decides L.

Proof. . .

