Fundamentele Informatica 3

voorjaar 2014
http://www.liacs.nl/home/rvvliet/fi3/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 4, 24 februari 2014
7. Turing Machines
7.6. The Church-Turing Thesis
7.7. Nondeterministic Turing Machines
7.8. Universal Turing Machines

7.6. The Church-Turing Thesis

Turing machine is general model of computation.

Any algorithmic procedure that can be carried out at all (by human computer, team of humans, electronic computer) can be carried out by a TM. (Alonzo Church, 1930s)

Evidence for Church-Turing thesis:

1. Nature of the model.
2. Various enhancements of TM do not change computing power.
3. Other theoretical models of computation have been proposed. Various notational systems have been suggested as ways of describing computations. All of them equivalent to TM.
4. No one has suggested any type of computation that ought to be considered 'algorithmic procedure' and cannot be implemented on TM.

7.7. Nondeterministic Turing Machines

A slide from lecture 2
Definition 7.1. Turing machines
A Turing machine (TM) is a 5-tuple $T=\left(Q, \Sigma,\left\ulcorner, q_{0}, \delta\right)\right.$, where
Q is a finite set of states. The two halt states h_{a} and h_{r} are not elements of Q.
Σ, the input alphabet, and Γ, the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$. The blank symbol Δ is not an element of Γ.
q_{0}, the initial state, is an element of Q.
δ is the transition function:

$$
\delta: Q \times(\Gamma \cup\{\Delta\}) \rightarrow\left(Q \cup\left\{h_{a}, h_{r}\right\}\right) \times(\Gamma \cup\{\Delta\}) \times\{R, L, S\}
$$

Nondeterministic Turing machine.

There may be more than one move for a state-symbol pair.

Same notation:

$$
\text { wpax } \vdash_{T} \text { yqbz } \quad \text { wpax } \vdash_{T}^{*} y q b z
$$

A string x is accepted by T if

$$
q_{0} \Delta x \vdash_{T}^{*} w h_{a y}
$$

for some strings $w, y \in(\Gamma \cup\{\Delta\})^{*}$.
NTM useful for accepting languages, for producing output, but not for computing function.

Example 7.28. The Set of Composite Natural Numbers. Use G2

Example 7.28. The Set of Composite Natural Numbers.

$$
N B \rightarrow G 2 \rightarrow N B \rightarrow G 2 \rightarrow P B \rightarrow M \rightarrow P B \rightarrow \text { Equal }
$$

Take $x=1{ }^{15}$

Example 7.30. The Language of Prefixes of Elements of L.

Let $L=L(T)$. Then

$$
P(L)=\left\{x \in \Sigma^{*} \mid x y \in L \text { for some } y \in \Sigma^{*}\right\}
$$

Example 7.30. The Language of Prefixes of Elements of L.
Let $L=L(T)$. Then

$$
P(L)=\left\{x \in \Sigma^{*} \mid x y \in L \text { for some } y \in \Sigma^{*}\right\}
$$

Deterministic TM accepting $P(L)$ may execute following algorithm for input x :
$y=\wedge$;
while (T does not accept $x y$)
y is next string in Σ^{*} (in canonical order);
accept;
but...

Example 7.30. The Language of Prefixes of Elements of L.
Let $L=L(T)$. Then

$$
P(L)=\left\{x \in \Sigma^{*} \mid x y \in L \text { for some } y \in \Sigma^{*}\right\}
$$

$$
N B \rightarrow G \rightarrow \text { Delete } \rightarrow P B \rightarrow T
$$

Theorem 7.31.
For every nondeterministic TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,
there is an ordinary (deterministic) TM $T_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, q_{1}, \delta_{1}\right)$ with $L\left(T_{1}\right)=L(T)$.

Proof. . .

Theorem 7.31.

For every nondeterministic TM $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$,
there is an ordinary (deterministic) TM $T_{1}=\left(Q_{1}, \Sigma, \Gamma_{1}, q_{1}, \delta_{1}\right)$ with $L\left(T_{1}\right)=L(T)$.

Proof. . .

Nondeterminism

- PDAs
- TMs

NP completeness / complexity

- nondeterminism
- size of input

7.8. Universal Turing Machines

Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine T_{u} that works as follows. It is assumed to receive an input string of the form $e(T) e(z)$, where

- T is an arbitrary TM,
- z is a string over the input alphabet of T,
- and e is an encoding function whose values are strings in $\{0,1\}^{*}$.

The computation performed by T_{u} on this input string satisfies these two properties:

1. T_{u} accepts the string $e(T) e(z)$ if and only if T accepts z.
2. If T accepts z and produces output y, then T_{u} produces output $e(y)$.

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet Γ of every Turing machine T is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.
Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

Definition 7.33. An Encoding Function (continued)

For each move m of T of the form $\delta(p, \sigma)=(q, \tau, D)$

$$
e(m)=1^{n(p)} 01^{n(\sigma)} 01^{n(q)} 01^{n(\tau)} 01^{n(D)} 0
$$

We list the moves of T in some order as $m_{1}, m_{2}, \ldots, m_{k}$, and we define

$$
e(T)=e\left(m_{1}\right) 0 e\left(m_{2}\right) 0 \ldots 0 e\left(m_{k}\right) 0
$$

If $z=z_{1} z_{2} \ldots z_{j}$ is a string, where each $z_{i} \in \mathcal{S}$,

$$
e(z)=01^{n\left(z_{1}\right)} 01^{n\left(z_{2}\right)} 0 \ldots 01^{n\left(z_{j}\right)} 0
$$

Example 7.34. A Sample Encoding of a TM

Does $e(T)$ completely specify $T=\left(Q, \Sigma,\left\ulcorner, q_{0}, \delta\right)\right.$?

Definition 7.32. Universal Turing Machines

A universal Turing machine is a Turing machine T_{u} that works as follows. It is assumed to receive an input string of the form $e(T) e(z)$, where

- T is an arbitrary TM,
- z is a string over the input alphabet of T,
- and e is an encoding function whose values are strings in $\{0,1\}^{*}$.

The computation performed by T_{u} on this input string satisfies these two properties:

1. T_{u} accepts the string $e(T) e(z)$ if and only if T accepts z.
2. If T accepts z and produces output y, then T_{u} produces output $e(y)$.

Some Crucial features of any encoding function e :

1. It should be possible to decide algorithmically, for any string $w \in\{0,1\}^{*}$, whether w is a legitimate value of e.
2. A string w should represent at most one Turing machine with a given input alphabet Σ, or at most one string z.
3. If $w=e(T)$ or $w=e(z)$, there should be an algorithm for decoding w.

Theorem 7.36. Let $E=\{e(T) \mid T$ is a Turing machine $\}$. Then for every $x \in\{0,1\}^{*}, x \in E$ if and only if all these conditions are satisfied:

1. x matches the regular expression

$$
\left(11^{*} 0\right)^{5} 0\left(\left(11^{*} 0\right)^{5} 0\right)^{*}
$$

so that it can be viewed as a sequence of one or more 5-tuples.

Theorem 7.36. Let $E=\{e(T) \mid T$ is a Turing machine $\}$. Then for every $x \in\{0,1\}^{*}, x \in E$ if and only if all these conditions are satisfied:

1. x matches the regular expression $\left(11^{*} 0\right)^{5} 0\left(\left(11^{*} 0\right)^{5} 0\right)^{*}$ so that it can be viewed as a sequence of one or more 5 -tuples.
2. No two substrings of x representing 5-tuples can have the same first two parts (no move can appear twice, and there can't be two different moves for a given combination of state and tape symbol).
3. None of the 5-tuples can have first part 1 or 11 (there can be no moves from a halting state).
4. The last part of each 5 -tuple must be 1,11 , or 111 (it must represent a direction).

Huiswerkopgave 1...

