Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 3, 17 februari 2014

7. Turing Machines

7.4. Combining Turing Machines

7.5. Multitape Turing Machines

7.4. Combining Turing Machines

Example.

A TM for $f(x) = a^{n_a(x)}$

x=aababba

Ν

Example 7.17. Finding the Next Blank or the Previous Blank

NB

Many notations for composition

PB

ω

Example 7.18. Copying a String

Copy: from Δx to $\Delta x \Delta x$

x = abaa

 q_0 Δ/Δ ,R A/A,R B/B,R

A slide from lecture 2

Example 7.10. The Reverse of a String

△a a b a b

△Aa b a b

△Aa b a A

△Ba b a A

△BAb a A

△BAb A A

△BAB A A

△BABAA

△BABAA

△BABAA

△BABAA

△BABAA

△BABAA

△BABAA

Example 7.24. Comparing Two Strings

Equal: accept $\Delta x \Delta y$ if x = y, and reject if $x \neq y$

Exercise 7.17.

For each case below, draw a TM that computes the indicated function. $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

e.
$$E: \{a,b\}^* \times \{a,b\}^* \to \{0,1\}$$
 defined by $E(x,y) = 1$ if $x = y$, $E(x,y) = 0$ otherwise.

9

10

Example 7.25. Accepting the Language of Palindromes

$$extit{Copy}
ightarrow extit{NB}
ightarrow extit{R}
ightarrow extit{PB}
ightarrow extit{Equal}$$

Example 7.20. Inserting and Deleting a Symbol

Delete: from $y\underline{\sigma}z$ to $y\underline{z}$

Insert(σ): from $y\underline{z}$ to $y\underline{\sigma}z$

N.B.: z does not contain blanks

Example 7.21. Erasing the Tape

From the current position to the right

11

12

Example 7.24. Comparing Two Strings

Equal: accept $\Delta x \Delta y$ if x = y, and reject if $x \neq y$

7.5. Multitape Turing Machines

13

2-tape TM...

14

A slide from lecture 2

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

Q is a finite set of states. The two halt states h_a and h_r are not elements of Q.

 $\Sigma,$ the input alphabet, and $\Gamma,$ the tape alphabet, are both finite sets, with $\Sigma\subseteq\Gamma.$ The blank symbol Δ is not an element of $\Gamma.$

 q_{0} , the initial state, is an element of ${\it Q}$.

 δ is the transition function:

$$\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$$

2-Tape TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, where

 $\delta: Q \times (\Gamma \cup \{\Delta\})^2 \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\})^2 \times \{R, L, S\}^2$

Combination of two slides from lecture 2

Notation:

description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$

configuration $xqy = xqy\Delta = xqy\Delta\Delta$

initial configuration corresponding to input x: $q_0 \Delta x$

In the third edition of the book, a configuration is denoted as $(q,x\underline{y})$ or $(q,x\underline{\sigma}y)$ instead of xqy or $xq\sigma y$. This old notation is also allowed for Fundamentele Informatica 3.

17

18

Configuration of 2-tape TM is

 $(q, x_1\underline{a_1}y_1, x_2\underline{a_2}y_2)$

Initial configuration corresponding to input string \boldsymbol{x} is

 $(q_0, \underline{\Delta}x, \underline{\Delta})$

Output will appear on first tape

Theorem 7.26. For every 2-tape TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, there is an ordinary 1-tape TM $T_1=(Q_1,\Sigma,\Gamma_1,q_1,\delta_1)$ with $\Gamma\subseteq\Gamma_1$, such that

- 1. For every $x\in \Sigma^*$, T accepts x if and only if T_1 accepts x, and T rejects x if and only if T_1 rejects x. (In particular, $L(T)=L(T_1)$.)
- Ņ For every $x \in \Sigma^*$, if

then $(q_0,\underline{\Delta}x,\underline{\Delta})\vdash_T^*(h_a,y\underline{a}z,u\underline{b}v)$ for some strings $y,z,u,v\in(\Gamma\cup\{\Delta\})^*$ and symbols $a,b\in\Gamma\cup\{\Delta\}$,

 $q_1 \triangle x \vdash_{T_1}^* y h_a az$ i.e., $(q_1, \underline{\Delta}x) \vdash_{T_1}^* (h_a, y\underline{a}z)$

Proof...

19

20

Simulating two tapes on one

If $\delta(p, 1, 0) = (q, \Delta, 1, L, R) \dots$

Simulating move of 2-tape TM T by 1-tape TM T_{1}

1. Move left to \$, right to σ' , back to \$

2. Move right to τ' Let $\delta(p,\sigma,\tau)=(q,\sigma_1,\tau_1,D_1,D_2)$ If $q=h_r$, reject Otherwise, $\tau'\to\tau_1$ and move D_2

Simulating two tape heads

If \$, rejectOtherwise, (if #, move #) place ' and back to \$

4. Move right to σ' , σ' $ightarrow \sigma_1$ and move D_1

5. If \$, reject
Otherwise, (if #, move #) place

22

21

Corollary 7.27.

Every language that is accepted by a 2-tape TM can be accepted by an ordinary 1-tape TM, and every function that is computed by a 2-tape TM can be computed by an ordinary TM.

If T accepts, then...

- 6 Delete second track
- 7. Delete \$ and #
- 8. Find σ' , unprime, halt in h_a

23