# Fundamentele Informatica 3 voorjaar 2014 http://www.liacs.nl/home/rvvliet/fi3/ Rudy van Vliet kamer 124 Snellius, tel. 071-5 rvvliet(at)liacs(dot)nl 071-527 5777 college 2, 10 februari 2014 Turing Machines 7.3. 7.1. A General Model of Computation7.2. Turing Machines as Language AcceptorsTuring Machines That Compute Partial Functions Part of an exercise from exercise class 1 For each of the following languages, draw a transition diagram for a Turing machine that accepts that language. **b.** $\{a^i b^j \mid i < j\}$ ₫. <u>.</u> Ν **Example 7.7.** Accepting $L = \{a^iba^j \mid 0 \le i < j\}$ To illustrate that a Turing machine T may run forever for an input that is not in L(T). No problem! Part of a slide from lecture 1 ## Turing machine Turing machine has a finite alphabet of symbols (actually two alphabets...) Turing machine has a finite number of states ω # A General Model of Computation Definition 7.1. Turing machines Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$ , where Q is a finite set of states. The two $\mathit{halt}$ states $h_a$ and $h_r$ are not elements of Q. the input alphabet, and $\Gamma$ , the tape alphabet, are both finite ts, with $\Sigma \subseteq \Gamma$ . The *blank* symbol $\Delta$ is not an element of $\Gamma$ . $q_{\mathrm{0}}$ , the initial state, is an element of Q $\delta$ is the transition function: ... Part of a slide from lecture 1 Assumptions about a human computer working with a pencil and paper: Each step taken by the computer depends only on the symbol he is currently examining and on his "state of mind" at the time; ω A slide from lecture 1 A move of a Turing machine consists of: - 1. Changing from the current state to another, possibly different - 2. Replacing the sym sibly different symbol: Replacing the symbol in the current square by another, pos- - Leaving the tape head on the current square, or moving it one square to the right, or moving it one square to the left if it is not already on the leftmost square. ## Definition 7.1. Turing machines A Turing machine (TM) is a 5-tuple $T=(Q,\Sigma,\Gamma,q_0,\delta)$ , where elements of Q. ${\it Q}$ is a finite set of states. The two $\mathit{halt}$ states $\mathit{h}_{\mathit{a}}$ and $\mathit{h}_{\mathit{r}}$ are not $\Sigma$ , the input alphabet, and $\Gamma$ , the tape alphabet, are both finite sets, with $\Sigma \subseteq \Gamma$ . The *blank* symbol $\Delta$ is not an element of $\Gamma$ . $q_{0}$ , the initial state, is an element of $\mathcal{Q}$ $\delta$ is the transition function: $\delta: Q \times (\Gamma \cup \{\Delta\}) \to (Q \cup \{h_a, h_r\}) \times (\Gamma \cup \{\Delta\}) \times \{R, L, S\}$ Interpretation of $$\delta(p,X) = (q,Y,D)$$ If q is $h_a$ or $h_r$ , the move causes T to halt What if D=L and T is on square 0? 9 10 Normally, TM starts with • input string starting in square 1 and all other squares blank, • and its tape head on square 0. Tape always contains finite number of non-blanks. Notation: Notation: configuration... description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$ $x\underline{y}=x\underline{y}\Delta=x\underline{y}\Delta\Delta$ if $y=\Lambda$ , then $x\underline{\Delta}$ 11 12 Notation: description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$ $x\underline{y} = x\underline{y}\Delta = x\underline{y}\Delta \Delta \Delta$ if $y = \Lambda$ , then $x\underline{\Delta}$ configuration $xqy = xqy\Delta = xqy\Delta\Delta$ if $y = \Lambda$ , then $xq\Delta$ Notation: description of tape contents: $x\underline{\sigma}y$ or $x\underline{y}$ $x\underline{y}=x\underline{y}\Delta=x\underline{y}\Delta\Delta$ if $y=\Lambda$ , then $x\underline{\Delta}$ configuration $xqy = xqy\Delta = xqy\Delta\Delta$ if $y = \Lambda$ , then $xq\Delta$ $\begin{array}{cccc} \text{move:} & xqy \vdash_T zrw & xqy \vdash_T^* zrw \\ & xqy \vdash zrw & xqy \vdash^* zrw \end{array}$ example: configuration $aabqa\Delta a$ and $\delta(q,a)=(r,\Delta,L)$ initial configuration corresponding to input x: . . . 14 13 Notation: description of tape contents: $x\underline{x}y$ or $x\underline{y}$ $x\underline{y} = x\underline{y}\Delta = x\underline{y}\Delta\Delta$ $\text{if } y = \Lambda, \text{ then } x\underline{\Delta}$ configuration $xqy = xqy\Delta = xqy\Delta\Delta$ if $y = \Lambda$ , then $xq\Delta$ $xqy \vdash_T zrw$ $xqy \vdash zrw$ $xqy \vdash_T^* zrw$ $xqy \vdash_T^* zrw$ example: configuration $aabqa\Delta a$ and $\delta(q,a)=(r,\Delta,L)$ initial configuration corresponding to input x: $q_0 \Delta x$ In the third edition of the book, a configuration is denoted as (q,xy) or (q,xzy) instead of xqy or $xq\sigma y$ . This old notation is also allowed for Fundamentele Informatica 3. 15 16 ## 7.2. Turing Machines as Language Acceptors **Definition 7.2.** Acceptance by a TM If $T=(Q,\Sigma,\Gamma,q_0,\delta)$ is a TM and $x\in\Sigma^*,$ x is accepted by T if $q_0 \Delta x \vdash_T^* w h_a y$ for some strings $w,y\in (\Gamma\cup\{\Delta\})^*$ (i.e., if, starting in the initial configuration corresponding to input x,T eventually halts in the accepting state). N.B.: sequence of moves leading to $h_a$ is unique A language $L\subseteq \Sigma^*$ is accepted by T if L=L(T), where $L(T)=\{x\in \Sigma^*\mid \ x \ \text{is accepted by } T\ \}$ 17 18 7.3. Turing Machines That Compute Partial Functions Example 7.10. The Reverse of a String $\begin{array}{c} \underline{\triangle}a\,a\,b\,a\,b\\ \Delta Aa\,b\,a\,b\\ \Delta Aa\,b\,a\,A\\ \Delta Ba\,b\,a\,A\\ \Delta BAb\,b\,AA\\ \Delta BA\,b\,AA\\ \Delta BA\,b\,AA\\ \Delta BA\,b\,AA\\ \Delta BABAA\\ \Delta BABAA\\ \Delta BABAA\\ \Delta b\,a\,b\,a\,a\\ \end{array}$ 19 20 Simple version of: Definition 7.9. A Turing Machine Computing a Function Let $T=(Q,\Sigma,\Gamma,q_0,\delta)$ be a Turing machine, and f a partial function on $\Sigma^*$ with values in $\Gamma^*$ . We say that T computes f if for every x in the domain of f, $q_0 \Delta x \vdash_T^* h_a \Delta f(x)$ and no other input string is accepted by T. Definition 7.9. A Turing Machine Computing a Function Let $T=(Q,\Sigma,\Gamma,g_0,\delta)$ be a Turing machine, k a natural number, and f a partial function on $(\Sigma^*)^k$ with values in $\Gamma^*$ . We say that T computes f if for every $(x_1,x_2,\ldots,x_k)$ in the domain of f, $$q_0 \Delta x_1 \Delta x_2 \Delta \dots \Delta x_k \vdash_T^* h_a \Delta f(x_1, x_2, \dots, x_k)$$ and no other input that is a k-tuple of strings is accepted by T. A partial function $f:(\Sigma^*)^k\to\Gamma^*$ is Turing-computable, or simply computable, if there is a TM that computes f. 21 **Example 7.12.** The Quotient and Remainder Mod 2 22 Example 7.14. The Characteristic Function of a Set $$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$ Example 7.14. The Characteristic Function of a Set $$\chi_L(x) = \begin{cases} 1 & \text{if } x \in L \\ 0 & \text{if } x \notin L \end{cases}$$ From computing $\chi_L$ to accepting L From accepting L to computing $\chi_L$ 24 23 ## Een Intermezzo 25