Fundamentele Informatica 3

voorjaar 2014
http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 15, 19 mei 2014
10. Computable Functions
10.3. Gödel Numbering
10.4. All Computable Functions are μ-Recursive 10.5. Other Approaches to Computability

A slide from lecture 13:

Example 10.13. The nth Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Prime}(n)=(n \geq 2) \wedge \neg \text { (there exists } y \text { such that } \\
& y \geq 2 \wedge y \leq n-1 \wedge \operatorname{Mod}(n, y)=0)
\end{aligned}
$$

A slide from lecture 13:

Example 10.13. The nth Prime Number

Let

$$
P(x, y)=(y>x \wedge \operatorname{Prime}(y))
$$

Then

$$
\begin{aligned}
\operatorname{PrNo}(0) & =2 \\
\operatorname{PrNo}(k+1) & =m_{P}(\operatorname{PrNo}(k),(\operatorname{PrNo}(k))!+1)
\end{aligned}
$$

is primitive recursive, with $h\left(x_{1}, x_{2}\right)=\ldots$

A slide from lecture 14:

Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

A slide from lecture 14:

Theorem 10.16.

All μ-recursive partial functions are computable.

Proof. . .

A slide from lecture 14:

Definition 10.17.
The Gödel Number of a Sequence of Natural Numbers
For every $n \geq 1$ and every finite sequence $x_{0}, x_{1}, \ldots, x_{n-1}$ of n natural numbers, the Gödel number of the sequence is the number

$$
g n\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=2^{x_{0}} 3^{x_{1}} 5^{x_{2}} \ldots(\operatorname{PrNo}(n-1))^{x_{n-1}}
$$

where $\operatorname{PrNo}(i)$ is the i th prime (Example 10.13).

A slide from lecture 14:

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x

Function Exponent: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined as follows:
Exponent $(i, x)= \begin{cases}\text { the exp. of } \operatorname{PrNo}(i) \text { in } x \text { 's prime fact. } & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}$

Configuration of Turing machine determined by

- state
- position on tape
- tape contents

A slide from lecture 4:

Assumptions:

1. Names of the states are irrelevant.
2. Tape alphabet Γ of every Turing machine T is subset of infinite set $\mathcal{S}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$, where $a_{1}=\Delta$.

A slide from lecture 4:

Definition 7.33. An Encoding Function

Assign numbers to each state:
$n\left(h_{a}\right)=1, n\left(h_{r}\right)=2, n\left(q_{0}\right)=3, n(q) \geq 4$ for other $q \in Q$.

Assign numbers to each tape symbol:
$n\left(a_{i}\right)=i$.

Assign numbers to each tape head direction:
$n(R)=1, n(L)=2, n(S)=3$.

Now different numbering

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be Turing machine

States: | h_{a} | h_{r} | q_{0} | \ldots | . |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | \ldots | s_{T} | with $s_{T}=\ldots$

Tape symbols: | Δ | \ldots | . |
| :---: | :---: | :---: |
| 0 | \ldots | $t s_{T}$ | with $t s_{T}=\ldots$

Now different numbering

Let $T=\left(Q, \Sigma, \Gamma, q_{0}, \delta\right)$ be Turing machine

States: | h_{a} | h_{r} | q_{0} | \ldots | . |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | \ldots | s_{T} | with $s_{T}=|Q|+1$

Tape symbols: | Δ | \ldots | . |
| :---: | :---: | :---: |
| | 而 | \ldots | with $t s_{T}=|\Gamma|$

$$
\begin{aligned}
\text { tapenumber }(\Delta a b \Delta a \Delta) & =2^{0} 3^{1} 5^{2} 7^{0} 11^{1} 13^{0} \ldots \\
\text { confignumber } & =2^{q} 3^{P} 5^{\text {tapenumber }}
\end{aligned}
$$

10.4. All Computable Functions are μ-Recursive

We must show that $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\operatorname{Result}_{T}\left(f_{T}\left(\operatorname{Init}^{\text {Config }}(n)(X)\right)\right)
$$

is μ-recursive.

Step 1

The function InitConfig ${ }^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$

Exercise 10.34.

Show using mathematical induction that if $\operatorname{tn}^{(n)}\left(x_{1}, \ldots, x_{n}\right)$ is the tape number containing the string

$$
\Delta 1^{x_{1}} \Delta 1^{x_{2}} \Delta \ldots \Delta 1^{x_{n}}
$$

then $t n^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is primitive recursive.

Use $\operatorname{nr}(\Delta)=0$ and $\operatorname{nr}(1)=1$.

Exercise 10.34.

Show using mathematical induction that if $\operatorname{tn}^{(n)}\left(x_{1}, \ldots, x_{n}\right)$ is the tape number containing the string

$$
\Delta 1^{x_{1}} \Delta 1^{x_{2}} \Delta \ldots \Delta 1^{x_{n}}
$$

then $t n^{(n)}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ is primitive recursive.
Suggestion: In the induction step, show that

$$
t n^{(m+1)}\left(X, x_{m+1}\right)=\operatorname{tn}^{(m)}(X) * \prod_{j=1}^{x_{m+1}} \operatorname{PrNo}\left(m+\sum_{i=1}^{m} x_{i}+j\right)
$$

Use $\operatorname{nr}(\Delta)=0$ and $\operatorname{nr}(1)=1$.

Step 2

The predicate IsConfig $_{T}$ defined by
IsConfig $_{T}(m)=(m$ is configuration number for $T)$

Step 2 (continued)

The function IsAccepting $_{T}$ defined by
IsAccepting $_{T}(m)= \begin{cases}0 & \text { if } m \text { represents accepting config. of } T \\ 1 & \text { otherwise }\end{cases}$

Step 2 (continued)

The function IsAccepting $_{T}$ defined by
$\operatorname{IsAccepting}_{T}(m)= \begin{cases}0 & \text { if }^{\left(I s C o n f i g_{T}\right.}(m) \wedge \operatorname{Exponent}(0, m)=0 \\ 1 & \text { otherwise }\end{cases}$

Step 3

The function Result $_{T}$...

Step 3

The function Result $_{T}$

Result $_{T}(m)= \begin{cases}\left.\operatorname{HighestPrime}^{(E x p o n e n t}(2, m)\right) & \text { if IsConfig } \\ 0 & \text { otherwise }\end{cases}$

Exercise 10.22.

Show that the function HighestPrime introduced in Section 10.4 is primitive recursive.

$$
\operatorname{HighestPrime}(k)= \begin{cases}0 & \text { if } k \leq 1 \\ \max \{i \mid \operatorname{Exponent}(i, k)>0\} & \text { if } k \geq 2\end{cases}
$$

Step 4

```
    State(m) = Exponent(0,m)
    Posn(m) = Exponent(1,m)
TapeNumber(m) = Exponent(2,m)
    Symbol(m) = Exponent(Posn(m),TapeNumber(m))
```

Step 4

$$
\begin{aligned}
\text { NewState }(m) & =\ldots \\
\operatorname{NewSymbol}(m) & =\ldots \\
\text { NewPosn }(m) & =\ldots \\
\text { NewTapeNumber }(m) & =\ldots
\end{aligned}
$$

Exercise 10.35.

Show that the function NewTapeNumber discussed in Section 10.4 is primitive recursive.

Suggestion: Determine the prime factor of TapeNumber (m) that may change by a move of the Turing machine, when the tape head is at position Posn(m).

Step 5

The function Move $_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by
Move $_{T}(m)=\left\{\begin{array}{l}g n(\operatorname{NewState}(m), \operatorname{NewPosn}(m), \operatorname{NewTapeNumber}(m)) \\ \text { if } \operatorname{IsConfig}_{T}(m) \\ \text { otherwise }\end{array}\right.$

Step 6

The function Moves $_{T}: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
\operatorname{Moves}_{T}(m, 0) & = \begin{cases}m & \text { if IsConfig } \\
\text { (} & (m) \\
0 & \text { otherwise }\end{cases} \\
\text { Moves }_{T}(m, k+1) & = \begin{cases}\text { Move }_{T}\left(\text { Moves }_{T}(m, k)\right) & \text { if IsConfig } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Step 7

The function NumberOfMovesToAccept ${ }_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
& \text { NumberOfMovesToAccept }_{T}(m)= \\
& \mu y\left[\operatorname{IsAccepting}_{T}\left(\operatorname{Moves}_{T}(m, y)\right)=0\right]
\end{aligned}
$$

Step 7

The function NumberOfMovesToAccept ${ }_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
& \text { NumberOfMovesToAccept }_{T}(m)= \\
& \qquad \mu y\left[\operatorname{IsAccepting}_{T}\left(\operatorname{Moves}_{T}(m, y)\right)=0\right]
\end{aligned}
$$

The function $f_{T}: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f_{T}(m)=\text { Moves }_{T}\left(m, \text { NumberOfMovesToAccept } T_{T}(m)\right)
$$

We must show that $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\operatorname{Result}_{T}\left(f_{T}\left(\operatorname{Init}^{\text {Config }}(n)(X)\right)\right)
$$

is μ-recursive.

Theorem 10.20.

Every Turing computable partial function from \mathbb{N}^{n} to \mathbb{N} is μ-recursive.

The Rest of the Proof. . .

A slide from lecture 14:
Definition 10.15. μ-Recursive Functions
The set \mathcal{M} of μ-recursive, or simply recursive, partial functions is defined as follows.

1. Every initial function is an element of \mathcal{M}.
2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M}.
3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ in \mathcal{M}, the function $M_{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
M_{f}(X)=\mu y[f(X, y)=0]
$$

is an element of \mathcal{M}.

10.5. Other Approaches to Computability

Let

- $G=(V, \Sigma, S, P)$ be unrestricted grammar
- f be partial function from Σ^{*} to Σ^{*}

Then G is said to compute f, if there are $A, B, C, D \in V$, such that for every x and y in Σ^{*}

$$
f(x)=y \text { if and only if } A x B \Rightarrow^{*} C y D
$$

Exercise.

Describe an unrestricted grammar that computes the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=2^{x}$.

Both the input x and the answer 2^{x} are unary numbers.

Computer programs vs. Turing machines

Computer programs vs. μ-recursive functions

En verder...

Tentamen: vrijdag 6 juni 2014, 14:00-17:00

Vragenuur...?

