Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 14, 12 mei 2014

10.2. Quantification, Minimalization, and μ -Recursive 10. Computable Functions

Functions 10.3. Gödel Numbering

A slide from lecture 12:

Definition 10.1. Initial Functions

The initial functions are the following: 1. Constant functions: For each $k\geq 0$ and each $a\geq 0$, the constant function $C_a^k:\mathbb{N}^k\to\mathbb{N}$ is defined by the formula

$$C_a^k(X) = a \quad \text{ for every } X \in \mathbb{N}^k$$

The successor function $s:\mathbb{N}\to\mathbb{N}$ is defined by the formula s(x) = x + 1

$$p_i^k(x_1, x_2, \dots, x_k) = x_i$$

Projection functions: For each $k\geq 1$ and each i with $1\leq i\leq k$, the projection function $p_i^k:\mathbb{N}^k\to\mathbb{N}$ is defined by the formula

Ν

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)

Suppose $n\geq 0$ and g and h are functions of n and n+2 variables, respectively. (By "a function of 0 variables," we mean simply a constant.) The function obtained from g and h by the operation of primitive recursion is the function $f:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by the formulas

A slide from lecture 12:

Suppose f is a partial function from \mathbb{N}^k to \mathbb{N} , and for each i with $1 \leq i \leq k, \ g_i$ is a partial function from \mathbb{N}^m to \mathbb{N} . The partial function obtained from f and g_1, g_2, \ldots, g_k by composition is the partial function h from \mathbb{N}^m to \mathbb{N} defined by the formula

$$h(X) = f(g_1(X), g_2(X), \dots, g_k(X))$$
 for every $X \in \mathbb{N}^m$

ω

for every $X \in \mathbb{N}^n$ and every $k \geq 0$.

f(X,0) = g(X) f(X,k+1) = h(X,k,f(X,k))

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

total and computable

not necessarily total Turing-computable functions:

n-place predicate P is function from \mathbb{N}^n to $\{\mathsf{true},\mathsf{false}\}$

A slide from lecture 12:

characteristic function χ_P defined by

$$\chi_P(X) = \begin{cases} 1 & \text{if } P(X) \text{ is true} \\ 0 & \text{if } P(X) \text{ is false} \end{cases}$$

We say P is primitive recursive...

10.2. Quantification, Minimalization, and $\mu ext{-Recursive Functions}$

A slide from lecture 13:

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_P: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

$$m_P(X,k) = \left\{ \begin{array}{ll} \min\{y \mid \ 0 \leq y \leq k \ \text{and} \ P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{array} \right.$$

The symbol $\boldsymbol{\mu}$ is often used for the minimalization operator, and we sometimes write

$$m_P(X,k) = {\stackrel{k}{\mu}} y[P(X,y)]$$

An important special case is that in which P(X,y) is (f(X,y)=0), for some $f:\mathbb{N}^{n+1}\to\mathbb{N}$. In this case m_P is written m_f and referred to as the bounded minimalization of f.

A slide from lecture 13:

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate, its bounded minimalization m_P is a primitive recursive function.

Proof...

A slide from lecture 13:

Example 10.13. The $n{
m th}$ Prime Number

$$PrNo(0) = PrNo(1) = PrNo(1)$$

$$PrNo(0) = 2$$
$$PrNo(1) = 3$$
$$PrNo(2) = 5$$

$$\begin{aligned} \textit{Prime}(n) &= (n \geq 2) \land \neg (\text{there exists } y \text{ such that} \\ y \geq 2 \land y \leq n-1 \land \textit{Mod}(n,y) = 0) \end{aligned}$$

9

10

A slide from lecture 13:

Example 10.13. The $n ext{th}$ Prime Number

Let

$$P(x,y) = (y > x \land Prime(y))$$

Then

$$\begin{aligned} &\textit{PrNo}(0) &= 2 \\ &\textit{PrNo}(k+1) &= & m_P(\textit{PrNo}(k), (\textit{PrNo}(k))! + 1) \end{aligned}$$

is primitive recursive, with $h(x_1,x_2)=\dots$

11

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

total and computable Turing-computable functions: not necessarily total 12

Unbounded minimalization

Total?

A possible definition:

Total?

Unbounded minimalization

 $M(X) = \left\{ \begin{array}{ll} (\min\{y \mid \ P(X,y) \text{ is true}\}) + 1 \\ 0 \end{array} \right.$ if this set is not empty otherwise

Computable?

13

14

A slide from lecture 13:

Unbounded quantification

$$Sq(x,y) = (y^2 = x)$$

H(x,y) = T_u stopt na precies y stappen voor invoer s_x

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization of P is the partial function $M_P:\mathbb{N}^n\to\mathbb{N}$ defined by

$$M_P(X) = \min\{y \mid P(X,y) \text{ is true}\}$$

 $M_P(X)$ is undefined at any $X\in\mathbb{N}^n$ for which there is no y satisfying P(X,y).

16

15

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization of P is the partial function $M_P:\mathbb{N}^n\to\mathbb{N}$ defined by

$$M_P(X) = \min\{y \mid P(X,y) \text{ is true}\}$$

 $M_P(X)$ is undefined at any $X\in\mathbb{N}^n$ for which there is no y satisfying P(X,y).

The notation $\mu y[P(X,y)]$ is also used for $M_P(X)$. In the special case in which P(X,y)=(f(X,y)=0), we write $M_P=M_f$ and refer to this function as the unbounded minimalization of f.

17

Definition 10.15. $\mu ext{-}$ Recursive Functions

The set ${\mathcal M}$ of $\mu\text{-recursive, or simply }\textit{recursive, partial functions}$ is defined as follows.

- 1. Every initial function is an element of $\ensuremath{\mathcal{M}}$
- 2. Every function obtained from elements of ${\cal M}$ by composition or primitive recursion is an element of ${\cal M}.$
- ω For every $n\geq 0$ and every total function $f:\mathbb{N}^{n+1}\to\mathbb{N}$ in $\mathcal{M},$ the function $M_f:\mathbb{N}^n\to\mathbb{N}$ defined by

$$M_f(X) = \mu y[f(X, y) = 0]$$
 ement of \mathcal{M} .

is an element of $\mathcal{M}.$

18

Exercise.

- ${\bf a.}$ Give an example of a non-total function f and another function g, such that the composition of f and g is total.
- ${\bf b.} \ \ {\rm Can\ you\ also\ find\ an\ example\ of\ a\ non-total\ function\ } f\ {\rm and\ } f\ {\rm is\ total\ ?}$ another function g, such that the composition of $g\ {\rm and\ } f\ {\rm is\ total\ ?}$

 $M_f(x)$...

Let

 $f(x,k) = p_1^2(x,k) - C_1^2(x,k)$

Example.

19

20

Theorem 10.16.

All $\mu\text{-recursive partial functions are computable.}$

21

10.3. Gödel Numbering

22

Definition 10.17.The Gödel Number of a Sequence of Natural Numbers

For every $n\geq 1$ and every finite sequence x_0,x_1,\dots,x_{n-1} of n natural numbers, the G"odel number of the sequence is the number

where PrNo(i) is the ith prime (Example 10.13) $gn(x_0, x_1, \dots, x_{n-1}) = 2^{x_0} 3^{x_1} 5^{x_2} \dots (PrNo(n-1))^{x_{n-1}}$

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of \boldsymbol{x}

Function $\textit{Exponent}: \mathbb{N}^2 \to \mathbb{N}$ defined as follows:

 $\textit{Exponent}(i,x) = \left\{ \begin{array}{l} \text{the exp. of } \textit{PrNo}(i) \text{ in } x \text{'s prime fact.} \\ 0 \end{array} \right.$ $\begin{array}{c} \text{if } x > 0 \\ 0 < x = 0 \end{array}$

24

23

Theorem 10.19.

Suppose that $g:\mathbb{N}^n\to\mathbb{N}$ and $h:\mathbb{N}^{n+2}\to\mathbb{N}$ are primitive recursive functions, and $f:\mathbb{N}^{n+1}\to\mathbb{N}$ is obtained from g and h by course-of-values recursion; that is

$$f(X,0) = g(X)$$

$$f(X,k+1) = h(X,k,gn(f(X,0),...,f(X,k)))$$

Then f is primitive recursive.

Proof...

25

Example.

Fibonacci

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ f(n-1) + f(n-2) & \text{if } n \ge 2 \end{cases}$$

26