
Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 14, 12 mei 2014

10. Computable Functions

10.2. Quantification, Minimalization, and µ-Recursive

Functions

10.3. Gödel Numbering

1



A slide from lecture 12:

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi

2



A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m

3



A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

4



A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

5



A slide from lecture 12:

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .

6



10.2. Quantification, Minimalization, and
µ-Recursive Functions

7



A slide from lecture 13:

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .

8



A slide from lecture 13:

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .

9



A slide from lecture 13:

Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

Prime(n) = (n ≥ 2) ∧ ¬(there exists y such that

y ≥ 2 ∧ y ≤ n− 1 ∧Mod(n, y) = 0)

10



A slide from lecture 13:

Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then

PrNo(0) = 2

PrNo(k +1) = mP (PrNo(k), (PrNo(k))! + 1)

is primitive recursive, with h(x1, x2) = . . .

11



A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

12



Unbounded minimalization

Total?

13



Unbounded minimalization

Total?

A possible definition:

M(X) =

{

(min{y | P (X, y) is true}) + 1 if this set is not empty
0 otherwise

Computable?

14



A slide from lecture 13:

Unbounded quantification

Sq(x, y) = (y2 = x)

H(x, y) = Tu stopt na precies y stappen voor invoer sx

15



Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).

16



Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization

of P is the partial function MP : Nn → N defined by

MP (X) = min{y | P (X, y) is true}

MP (X) is undefined at any X ∈ N
n for which there is no y satis-

fying P (X, y).

The notation µ y[P (X, y)] is also used for MP (X).

In the special case in which P (X, y) = (f(X, y) = 0), we write

MP = Mf and refer to this function as the unbounded minimal-

ization of f .

17



Definition 10.15. µ-Recursive Functions

The set M of µ-recursive, or simply recursive, partial functions

is defined as follows.

1. Every initial function is an element of M.

2. Every function obtained from elements of M by composition

or primitive recursion is an element of M.

3. For every n ≥ 0 and every total function f : Nn+1 → N in M,

the function Mf : Nn → N defined by

Mf(X) = µ y[f(X, y) = 0]

is an element of M.

18



Example.

Let

f(x, k) = p21(x, k)
.
− C2

1(x, k)

Mf(x) . . .

19



Exercise.

a. Give an example of a non-total function f and another func-

tion g, such that the composition of f and g is total.

b. Can you also find an example of a non-total function f and

another function g, such that the composition of g and f is total?

20



Theorem 10.16.

All µ-recursive partial functions are computable.

Proof. . .

21



10.3. Gödel Numbering

22



Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every n ≥ 1 and every finite sequence x0, x1, . . . , xn−1 of

n natural numbers, the Gödel number of the sequence is the

number

gn(x0, x1, . . . , xn−1) = 2x03x15x2 . . . (PrNo(n− 1))xn−1

where PrNo(i) is the ith prime (Example 10.13).

23



Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x

Function Exponent : N2 → N defined as follows:

Exponent(i, x) =

{

the exp. of PrNo(i) in x’s prime fact. if x > 0
0 if x = 0

24



Theorem 10.19.

Suppose that g : Nn → N and h : Nn+2 → N are primitive recursive

functions, and f : Nn+1 → N is obtained from g and h by course-

of-values recursion; that is

f(X,0) = g(X)

f(X, k +1) = h(X, k,gn(f(X,0), . . . , f(X, k)))

Then f is primitive recursive.

Proof. . .

25



Example.

Fibonacci

f(n) =











0 if n = 0
1 if n = 1

f(n− 1) + f(n− 2) if n ≥ 2

26


