Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 14, 12 mei 2014

10. Computable Functions 10.2. Quantification, Minimalization, and μ -Recursive Functions

10.3. Gödel Numbering

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_a^k : \mathbb{N}^k \to \mathbb{N}$ is defined by the formula

$$C_a^k(X) = a$$
 for every $X \in \mathbb{N}^k$

2. The *successor* function $s: \mathbb{N} \to \mathbb{N}$ is defined by the formula

$$s(x) = x + 1$$

3. Projection functions: For each $k \geq 1$ and each i with $1 \leq i \leq k$, the projection function $p_i^k : \mathbb{N}^k \to \mathbb{N}$ is defined by the formula

$$p_i^k(x_1, x_2, \dots, x_k) = x_i$$

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^k to \mathbb{N} , and for each i with $1 \leq i \leq k$, g_i is a partial function from \mathbb{N}^m to \mathbb{N} . The partial function obtained from f and g_1, g_2, \ldots, g_k by composition is the partial function h from \mathbb{N}^m to \mathbb{N} defined by the formula

$$h(X) = f(g_1(X), g_2(X), \dots, g_k(X))$$
 for every $X \in \mathbb{N}^m$

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)

2. Suppose $n \ge 0$ and g and h are functions of n and n+2 variables, respectively. (By "a function of 0 variables," we mean simply a constant.)

The function obtained from g and h by the operation of primitive recursion is the function $f:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by the formulas

$$f(X,0) = g(X)$$

$$f(X,k+1) = h(X,k,f(X,k))$$

for every $X \in \mathbb{N}^n$ and every $k \geq 0$.

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

n-place predicate P is function from \mathbb{N}^n to $\{\text{true}, \text{false}\}$

characteristic function χ_P defined by

$$\chi_P(X) = \begin{cases} 1 & \text{if } P(X) \text{ is true} \\ 0 & \text{if } P(X) \text{ is false} \end{cases}$$

We say P is primitive recursive. . .

10.2. Quantification, Minimalization, and μ -Recursive Functions

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_P: \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

$$m_P(X,k) = \left\{ \begin{array}{ll} \min\{y \mid \ 0 \leq y \leq k \ \text{and} \ P(X,y)\} \\ k+1 & \text{otherwise} \end{array} \right.$$
 if this set is not empty

The symbol μ is often used for the minimalization operator, and we sometimes write

$$m_P(X,k) = \overset{k}{\mu} y[P(X,y)]$$

An important special case is that in which P(X,y) is (f(X,y)=0), for some $f: \mathbb{N}^{n+1} \to \mathbb{N}$. In this case m_P is written m_f and referred to as the bounded minimalization of f.

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate, its bounded minimalization m_P is a primitive recursive function.

Proof...

Example 10.13. The nth Prime Number

$$PrNo(0) = 2$$

$$PrNo(1) = 3$$

$$PrNo(2) = 5$$

$$Prime(n) = (n \ge 2) \land \neg (\text{there exists } y \text{ such that}$$

$$y \ge 2 \land y \le n - 1 \land Mod(n, y) = 0)$$

Example 10.13. The nth Prime Number

Let

$$P(x,y) = (y > x \land Prime(y))$$

Then

$$PrNo(0) = 2$$

 $PrNo(k+1) = m_P(PrNo(k), (PrNo(k))! + 1)$

is primitive recursive, with $h(x_1, x_2) = \dots$

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

Unbounded minimalization

Total?

Unbounded minimalization

Total?

A possible definition:

$$M(X) = \left\{ \begin{array}{ccc} (\min\{y \mid P(X,y) \text{ is true}\}) + 1 & \text{if this set is not empty} \\ 0 & \text{otherwise} \end{array} \right.$$

Computable?

Unbounded quantification

$$Sq(x,y) = (y^2 = x)$$

 $H(x,y) = T_u$ stopt na precies y stappen voor invoer s_x

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the *unbounded minimalization* of P is the partial function $M_P: \mathbb{N}^n \to \mathbb{N}$ defined by

$$M_P(X) = \min\{y \mid P(X, y) \text{ is true}\}$$

 $M_P(X)$ is undefined at any $X \in \mathbb{N}^n$ for which there is no y satisfying P(X,y).

Definition 10.14. Unbounded Minimalization

If P is an (n+1)-place predicate, the unbounded minimalization of P is the partial function $M_P: \mathbb{N}^n \to \mathbb{N}$ defined by

$$M_P(X) = \min\{y \mid P(X, y) \text{ is true}\}$$

 $M_P(X)$ is undefined at any $X \in \mathbb{N}^n$ for which there is no y satisfying P(X,y).

The notation $\mu y[P(X,y)]$ is also used for $M_P(X)$.

In the special case in which P(X,y)=(f(X,y)=0), we write $M_P=M_f$ and refer to this function as the unbounded minimalization of f.

Definition 10.15. μ -Recursive Functions

The set \mathcal{M} of μ -recursive, or simply *recursive*, partial functions is defined as follows.

- 1. Every initial function is an element of \mathcal{M} .
- 2. Every function obtained from elements of \mathcal{M} by composition or primitive recursion is an element of \mathcal{M} .
- 3. For every $n \geq 0$ and every total function $f: \mathbb{N}^{n+1} \to \mathbb{N}$ in \mathcal{M} , the function $M_f: \mathbb{N}^n \to \mathbb{N}$ defined by

$$M_f(X) = \mu y[f(X, y) = 0]$$

is an element of \mathcal{M} .

Example.

Let

$$f(x,k) = p_1^2(x,k) - C_1^2(x,k)$$

$$M_f(x)$$
 ...

Exercise.

- **a.** Give an example of a non-total function f and another function g, such that the composition of f and g is total.
- **b.** Can you also find an example of a non-total function f and another function g, such that the composition of g and f is total?

Theorem 10.16.

All μ -recursive partial functions are computable.

Proof...

10.3. Gödel Numbering

Definition 10.17.

The Gödel Number of a Sequence of Natural Numbers

For every $n \geq 1$ and every finite sequence $x_0, x_1, \ldots, x_{n-1}$ of n natural numbers, the *Gödel number* of the sequence is the number

$$gn(x_0, x_1, \dots, x_{n-1}) = 2^{x_0} 3^{x_1} 5^{x_2} \dots (PrNo(n-1))^{x_{n-1}}$$

where PrNo(i) is the *i*th prime (Example 10.13).

Example 10.18.

The Power to Which a Prime is Raised in the Factorization of x

Function *Exponent* : $\mathbb{N}^2 \to \mathbb{N}$ defined as follows:

$$Exponent(i,x) = \begin{cases} \text{the exp. of } PrNo(i) \text{ in } x\text{'s prime fact.} & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Theorem 10.19.

Suppose that $g: \mathbb{N}^n \to \mathbb{N}$ and $h: \mathbb{N}^{n+2} \to \mathbb{N}$ are primitive recursive functions, and $f: \mathbb{N}^{n+1} \to \mathbb{N}$ is obtained from g and h by course-of-values recursion; that is

$$f(X,0) = g(X)$$

 $f(X,k+1) = h(X,k,gn(f(X,0),...,f(X,k)))$

Then f is primitive recursive.

Proof...

Example.

Fibonacci

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1\\ f(n-1) + f(n-2) & \text{if } n \ge 2 \end{cases}$$