Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. rvvliet(at)liacs(dot)nl 071-527 5777

(werk-)college 13, 6 mei 2014

10.2. Quantification, Minimalization, and $\mu\text{-Recursive}$ Computable Functions **Functions**

Exercise 7.37.

Show that if there is TM T computing the function $f:\mathbb{N}\to\mathbb{N}$, then there is another one, T', whose tape alphabet is $\{1\}$.

N

Exercise.

 q_0,q_1,\dots,q_{n-1} and tape alphabet $\{0,1\}$? How many Turing machines are there having n nonhalting states

ω

A slide from lecture 12:

Definition 10.1. Initial Functions

$$C_a^k(X) = a$$
 for every $X \in \mathbb{N}^k$

The successor function $s:\mathbb{N}\to\mathbb{N}$ is defined by the formula

$$s(x) = x + 1$$

Projection functions: For each $k\geq 1$ and each i with $i\leq k$, the projection function $p_i^k:\mathbb{N}^k\to\mathbb{N}$ is defined by formula 1 ≤ / the

$$p_i^{\kappa}(x_1, x_2, \dots, x_k) = x_i$$

The initial functions are the following:

Constant functions: For each $k\geq 0$ and each $a\geq 0$, the constant function $C_a^k:\mathbb{N}^k\to\mathbb{N}$ is defined by the formula

$$p_i^k(x_1, x_2, \dots, x_k) = x_i$$

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)

 $\dot{\mathcal{D}}$ Suppose $n\geq 0$ and g and h are functions of n and n+2 variables, respectively. (By "a function of 0 variables," we mean simply a constant.) The function obtained from g and h by the operation of primitive recursion is the function $f:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by the formulas

formulas
$$f(X,0) = g(X)$$

$$f(X,k+1) = h(X,k,f(X,k))$$

for every $X \in \mathbb{N}^n$ and every $k \ge 0$.

Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \to \mathbb{N}$ is defined as follows. The value b(0) is 0. For n>0, there are only a finite number of Turing machines having n nonhalting states g_0,g_1,\dots,g_{n-1} and tape alphabet $\{0,1\}$. Let T_0,T_1,\dots,T_m be the TMs of this type that eventually halt on input 1^n , and for each i, let n_i be the number of 1's that T_i leaves on its tape when it halts after processing the input string 1^n . The number b(n) is defined to be the maximum of the numbers n_0, n_1, \ldots, n_m

Show that the total function $b:\mathbb{N}\to\mathbb{N}$ is not computable. Suggestion: Suppose for the sake of contradiction that T_b is a TM that computes b. Then we can assume without loss of generality that T_b has tape-alfabet $\{0,1\}$.

A slide from lecture 12:

Recursion Definition 10.2. The Operations of Composition and Primitive

Suppose f is a partial function from \mathbb{N}^k to \mathbb{N} , and for each i with $1 \leq i \leq k,\ g_i$ is a partial function from \mathbb{N}^m to \mathbb{N} . The partial function obtained from f and g_1,g_2,\ldots,g_k by composition is the partial function h from \mathbb{N}^m to \mathbb{N} defined

$$h(X) = f(g_1(X), g_2(X), \dots, g_k(X))$$
 for every $X \in \mathbb{N}^m$

by the formula

A slide from lecture 12:

n-place predicate P is function from \mathbb{N}^n to $\{\mathsf{true},\mathsf{false}\}$

function χ_P defined by

$$\chi_P(X) = \begin{cases} 1 & \text{if } P(X) \text{ is true} \\ 0 & \text{if } P(X) \text{ is false} \end{cases}$$

We say P is primitive recursive.

A slide from lecture 12:

Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, primitive recursive. GE, and NE are

(LT stands for "less than," and the other five have similarly

intuitive abbreviations.) If P and Q are any primitive recursive n-place predicates, then $P \wedge Q$, $P \vee Q$ and $\neg P$ are primitive recursive.

Proof..

9

Theorem 10.7.

A slide from lecture 12:

Suppose f_1, f_2, \dots, f_k are primitive recursive functions from \mathbb{N}^n

to \mathbb{N} , P_1, P_2, \dots, P_k are primitive recursive n-place predicates, and for every $X \in \mathbb{N}^n$, exactly one of the conditions $P_1(X), P_2(X), \dots, P_k(X)$ is true. Then the function $f: \mathbb{N}^n \to \mathbb{N}$ defined by

$$f(X) = \begin{cases} f_1(X) & \text{if } P_1(X) \text{ is true} \\ f_2(X) & \text{if } P_2(X) \text{ is true} \\ \dots \\ f_k(X) & \text{if } P_k(X) \text{ is true} \end{cases}$$

is primitive recursive.

Proof...

10

Exercise.

Let $f:\mathbb{N}^{n+1} \to \mathbb{N}$ be a primitive recursive function.

Show that the predicate $P:\mathbb{N}^{n+1} \to \{\text{true}, \text{false}\}$ defined by

$$P(X,y) = (f(X,y) = 0)$$

11

12

is primitive recursive

10.2. Quantification, Minimalization, and $\mu\text{-Recursive Functions}$

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

Unbounded quantification

$$Sq(x,y) = (y^2 = x)$$

H(x, y) = $T_{\!u}$ stopt na precies y stappen voor invoer s_x

total and computable

not necessarily total Turing-computable functions:

14

Theorem 10.10.

If P is a primitive recursive (n+1)-place predicate, both the predicates E_P and A_P are also primitive recursive.

Definition 10.9. Bounded Quantifications

Let P be an (n+1)-place predicate. The bounded existential quantification of P is the (n+1)-place predicate E_P defined by

The bounded universal quantification of P is the $(n+1)\mbox{-place}$ predicate A_P defined by $E_P(X,k) = (\text{there exists } y \text{ with } 0 \leq y \leq k \text{ such that } P(X,y) \text{ is true})$

 $A_P(X,k) = \text{(for every } y \text{ satifying } 0 \leq y \leq k, \ P(X,y) \text{ is true)}$

16

15

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

 $m_p(X,k) = \left\{ \begin{array}{ll} \min\{y \mid \ 0 \leq y \leq k \ \text{and} \ P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{array} \right.$

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_p:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by

Definition 10.11. Bounded Minimalization

18

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_P:\mathbb{N}^{n+1}\to\mathbb{N}$ defined by

$$m_P(X,k) = \left\{ \begin{array}{ll} \min\{y \mid \ 0 \leq y \leq k \ \text{and} \ P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{array} \right.$$

The symbol $\boldsymbol{\mu}$ is often used for the minimalization operator, and we sometimes write

$$m_P(X,k) = {}^k_\mu y[P(X,y)]$$

An important special case is that in which P(X,y) is (f(X,y)=0), for some $f:\mathbb{N}^{n+1}\to\mathbb{N}$. In this case m_P is written m_f and referred to as the bounded minimalization of f.

20

Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate, its bounded minimalization m_P is a primitive recursive function.

Proof...

Example 10.13. The nth Prime Number

$$PrNo(0) = 2$$

$$PrNo(1) = 3$$

$$PrNo(2) = 5$$

$$PrNo(1) = 3$$
$$PrNo(2) = 5$$

Example 10.13. The $n ext{th}$ Prime Number

$$PrNo(0) = 2$$

$$PrNo(1) = 3$$

$$PrNo(0) = 2$$
$$PrNo(1) = 3$$
$$PrNo(2) = 5$$

Prime(n)

П

 $(n \geq 2) \land \neg (\text{there exists } y \text{ such that} \\ y \geq 2 \land y \leq n-1 \land Mod(n,y) = 0)$

21

Example 10.13. The nth Prime Number

Let

$$P(x,y) = (y > x \land Prime(y))$$

Then

$$PrNo(0) = 2$$

 $PrNo(k+1) = m_P(PrNo(k), (PrNo(k))! + 1)$

is primitive recursive, with $h(x_1, x_2) = \dots$

Exercise 10.19.

Show that each of the following functions is primitive recursive.

b.
$$f: \mathbb{N}^2 \to \mathbb{N}$$
 defined by $f(x,y) = \min\{x,y\}$

$$x = f(x,y) = f(x,y) = f(x,y)$$

c.
$$f:\mathbb{N}\to\mathbb{N}$$
 defined by $f(x)=\lfloor\sqrt{x}\rfloor$ (the largest natural number less than or equal to \sqrt{x})

d.
$$f: \mathbb{N} \to \mathbb{N}$$
 defined by $f(x) = \lfloor \log_2(x+1) \rfloor$

24

23

Exercise 10.23.

In addition to the bounded minimalization of a predicate, we might define the bounded maximalization of a predicate P to be the function m^P defined by $m^P(X,k) = \left\{ \begin{array}{ll} \max\{y \leq k \mid \ P(x,y) \text{ is true}\} & \text{if this set is not empty} \\ 0 & \text{otherwise} \end{array} \right.$

$$P(X,k) = \begin{cases} \max\{y \leq k \mid P(x,y) \text{ is true}\} & \text{if this set is not empty otherwise} \end{cases}$$

- ${\bf a.}$ Show m^P is primitive recursive by finding two primitive recursive functions from which it can be obtained by primitive recursion.
- ${\bf b.}~{\bf Show}~m^P$ is primitive recursive by using bounded minimalization.