Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

(werk-)college 13, 6 mei 2014

10. Computable Functions 10.2. Quantification, Minimalization, and μ -Recursive Functions Exercise 7.37.

Show that if there is TM T computing the function $f : \mathbb{N} \to \mathbb{N}$, then there is another one, T', whose tape alphabet is $\{1\}$.

Exercise.

How many Turing machines are there having n nonhalting states $q_0, q_1, \ldots, q_{n-1}$ and tape alphabet $\{0, 1\}$?

Exercise 10.2.

The busy-beaver function $b : \mathbb{N} \to \mathbb{N}$ is defined as follows. The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines having n nonhalting states $q_0, q_1, \ldots, q_{n-1}$ and tape alphabet $\{0, 1\}$. Let T_0, T_1, \ldots, T_m be the TMs of this type that eventually halt on input 1^n , and for each i, let n_i be the number of 1's that T_i leaves on its tape when it halts after processing the input string 1^n . The number b(n) is defined to be the maximum of the numbers n_0, n_1, \ldots, n_m .

Show that the total function $b : \mathbb{N} \to \mathbb{N}$ is not computable. Suggestion: Suppose for the sake of contradiction that T_b is a TM that computes b. Then we can assume without loss of generality that T_b has tape-alfabet $\{0, 1\}$.

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each $k \ge 0$ and each $a \ge 0$, the constant function $C_a^k : \mathbb{N}^k \to \mathbb{N}$ is defined by the formula

$$C_a^k(X) = a$$
 for every $X \in \mathbb{N}^k$

2. The successor function $s: \mathbb{N} \to \mathbb{N}$ is defined by the formula

$$s(x) = x + 1$$

3. Projection functions: For each $k\geq 1$ and each i with $1\leq i\leq k,$ the projection function $p_i^k:\mathbb{N}^k\to\mathbb{N}$ is defined by the formula

$$p_i^k(x_1, x_2, \dots, x_k) = x_i$$

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose f is a partial function from \mathbb{N}^k to \mathbb{N} , and for each i with $1 \leq i \leq k$, g_i is a partial function from \mathbb{N}^m to \mathbb{N} . The partial function obtained from f and g_1, g_2, \ldots, g_k by composition is the partial function h from \mathbb{N}^m to \mathbb{N} defined by the formula

$$h(X) = f(g_1(X), g_2(X), \dots, g_k(X))$$
 for every $X \in \mathbb{N}^m$

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)

2. Suppose $n \ge 0$ and g and h are functions of n and n + 2 variables, respectively. (By "a function of 0 variables," we mean simply a constant.)

The function obtained from g and h by the operation of *primitive recursion* is the function $f : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by the formulas

$$f(X,0) = g(X)$$

$$f(X,k+1) = h(X,k,f(X,k))$$

for every $X \in \mathbb{N}^n$ and every $k \ge 0$.

n-place predicate P is function from \mathbb{N}^n to {true, false}

characteristic function χ_P defined by

$$\chi_P(X) = \begin{cases} 1 & \text{if } P(X) \text{ is true} \\ 0 & \text{if } P(X) \text{ is false} \end{cases}$$

We say P is primitive recursive...

Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, GE, and NE are primitive recursive.

 $(LT \text{ stands for "less than," and the other five have similarly intuitive abbreviations.)$

If P and Q are any primitive recursive n-place predicates, then $P \wedge Q$, $P \vee Q$ and $\neg P$ are primitive recursive.

Proof...

Theorem 10.7.

Suppose f_1, f_2, \ldots, f_k are primitive recursive functions from \mathbb{N}^n to \mathbb{N} ,

 P_1, P_2, \ldots, P_k are primitive recursive *n*-place predicates, and for every $X \in \mathbb{N}^n$,

exactly one of the conditions $P_1(X), P_2(X), \ldots, P_k(X)$ is true. Then the function $f : \mathbb{N}^n \to \mathbb{N}$ defined by

$$f(X) = \begin{cases} f_1(X) & \text{if } P_1(X) \text{ is true} \\ f_2(X) & \text{if } P_2(X) \text{ is true} \\ \\ \dots \\ f_k(X) & \text{if } P_k(X) \text{ is true} \end{cases}$$

is primitive recursive.

Proof...

Exercise.

Let $f : \mathbb{N}^{n+1} \to \mathbb{N}$ be a primitive recursive function.

Show that the predicate $P : \mathbb{N}^{n+1} \rightarrow {\text{true}, \text{false}}$ defined by

$$P(X, y) = (f(X, y) = 0)$$

is primitive recursive.

10.2. Quantification, Minimalization, and μ -Recursive Functions

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

Unbounded quantification

$$Sq(x,y) = (y^2 = x)$$

 $H(x,y) = T_u$ stopt na precies y stappen voor invoer s_x

Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential quantification of P is the (n + 1)-place predicate E_P defined by

 $E_P(X,k) = (\text{there exists } y \text{ with } 0 \le y \le k \text{ such that } P(X,y) \text{ is true})$ The bounded universal quantification of P is the (n + 1)-place predicate A_P defined by

 $A_P(X,k) =$ (for every y satisfying $0 \le y \le k$, P(X,y) is true)

Theorem 10.10.

If P is a primitive recursive (n + 1)-place predicate, both the predicates E_P and A_P are also primitive recursive.

Proof...

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: total and computable

Turing-computable functions: not necessarily total

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_p : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

 $m_p(X,k) = \begin{cases} \min\{y \mid 0 \le y \le k \text{ and } P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{cases}$

Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P, the bounded minimalization of P is the function $m_P : \mathbb{N}^{n+1} \to \mathbb{N}$ defined by

$$m_P(X,k) = \begin{cases} \min\{y \mid 0 \le y \le k \text{ and } P(X,y)\} & \text{if this set is not empty} \\ k+1 & \text{otherwise} \end{cases}$$

The symbol μ is often used for the minimalization operator, and we sometimes write

$$m_P(X,k) = \overset{k}{\mu} y[P(X,y)]$$

An important special case is that in which P(X, y) is (f(X, y) = 0), for some $f : \mathbb{N}^{n+1} \to \mathbb{N}$. In this case m_P is written m_f and referred to as the bounded minimalization of f.

Theorem 10.12.

If P is a primitive recursive (n + 1)-place predicate, its bounded minimalization m_P is a primitive recursive function.

Proof...

Example 10.13. The *n*th Prime Number

$$PrNo(0) = 2$$
$$PrNo(1) = 3$$
$$PrNo(2) = 5$$

Example 10.13. The *n*th Prime Number

PrNo(0) = 2PrNo(1) = 3PrNo(2) = 5

 $\begin{aligned} \text{Prime}(n) &= (n \geq 2) \land \neg(\text{there exists } y \text{ such that} \\ y \geq 2 \land y \leq n - 1 \land \textit{Mod}(n, y) = 0) \end{aligned}$

Example 10.13. The *n*th Prime Number

Let

$$P(x,y) = (y > x \land Prime(y))$$

Then

$$PrNo(0) = 2$$

$$PrNo(k+1) = m_P(PrNo(k), (PrNo(k))! + 1)$$

is primitive recursive, with $h(x_1, x_2) = \dots$

Exercise 10.19.

Show that each of the following functions is primitive recursive.

b. $f : \mathbb{N}^2 \to \mathbb{N}$ defined by $f(x, y) = \min\{x, y\}$

c. $f : \mathbb{N} \to \mathbb{N}$ defined by $f(x) = \lfloor \sqrt{x} \rfloor$ (the largest natural number less than or equal to \sqrt{x})

d. $f : \mathbb{N} \to \mathbb{N}$ defined by $f(x) = \lfloor \log_2(x+1) \rfloor$

Exercise 10.23.

In addition to the bounded minimalization of a predicate, we might define the bounded maximalization of a predicate P to be the function m^P defined by

$$m^{P}(X,k) = \begin{cases} \max\{y \le k \mid P(x,y) \text{ is true} \} & \text{if this set is not empty} \\ 0 & \text{otherwise} \end{cases}$$

a. Show m^P is primitive recursive by finding two primitive recursive functions from which it can be obtained by primitive recursion.

b. Show m^P is primitive recursive by using bounded minimalization.