## Fundamentele Informatica 3

voorjaar 2014<br>http://www.liacs.nl/home/rvvliet/fi3/<br>Rudy van Vliet<br>kamer 124 Snellius, tel. 071-527 5777<br>rvvliet(at)liacs(dot)nl<br>(werk-)college 13, 6 mei 2014<br>10. Computable Functions<br>10.2. Quantification, Minimalization, and $\mu$-Recursive<br>Functions

## Exercise 7.37.

Show that if there is TM $T$ computing the function $f: \mathbb{N} \rightarrow \mathbb{N}$, then there is another one, $T^{\prime}$, whose tape alphabet is $\{1\}$.

## Exercise.

How many Turing machines are there having $n$ nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$ ?

## Exercise 10.2.

The busy-beaver function $b: \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows.
The value $b(0)$ is 0 .
For $n>0$, there are only a finite number of Turing machines having $n$ nonhalting states $q_{0}, q_{1}, \ldots, q_{n-1}$ and tape alphabet $\{0,1\}$. Let $T_{0}, T_{1}, \ldots, T_{m}$ be the TMs of this type that eventually halt on input $1^{n}$, and for each $i$, let $n_{i}$ be the number of 1 's that $T_{i}$ leaves on its tape when it halts after processing the input string $1^{n}$. The number $b(n)$ is defined to be the maximum of the numbers $n_{0}, n_{1}, \ldots, n_{m}$.

Show that the total function $b: \mathbb{N} \rightarrow \mathbb{N}$ is not computable. Suggestion: Suppose for the sake of contradiction that $T_{b}$ is a TM that computes $b$. Then we can assume without loss of generality that $T_{b}$ has tape-alfabet $\{0,1\}$.

A slide from lecture 12:
Definition 10.1. Initial Functions
The initial functions are the following:

1. Constant functions: For each $k \geq 0$ and each $a \geq 0$, the constant function $C_{a}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
C_{a}^{k}(X)=a \quad \text { for every } X \in \mathbb{N}^{k}
$$

2. The successor function $s: \mathbb{N} \rightarrow \mathbb{N}$ is defined by the formula

$$
s(x)=x+1
$$

3. Projection functions: For each $k \geq 1$ and each $i$ with $1 \leq$ $i \leq k$, the projection function $p_{i}^{k}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by the formula

$$
p_{i}^{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x_{i}
$$

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive Recursion

1. Suppose $f$ is a partial function from $\mathbb{N}^{k}$ to $\mathbb{N}$, and for each $i$ with $1 \leq i \leq k, g_{i}$ is a partial function from $\mathbb{N}^{m}$ to $\mathbb{N}$. The partial function obtained from $f$ and $g_{1}, g_{2}, \ldots, g_{k}$ by composition is the partial function $h$ from $\mathbb{N}^{m}$ to $\mathbb{N}$ defined by the formula

$$
h(X)=f\left(g_{1}(X), g_{2}(X), \ldots, g_{k}(X)\right) \text { for every } X \in \mathbb{N}^{m}
$$

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive Recursion (continued)
2. Suppose $n \geq 0$ and $g$ and $h$ are functions of $n$ and $n+2$ variables, respectively. (By "a function of 0 variables," we mean simply a constant.)
The function obtained from $g$ and $h$ by the operation of primitive recursion is the function $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by the formulas

$$
\begin{aligned}
f(X, 0) & =g(X) \\
f(X, k+1) & =h(X, k, f(X, k))
\end{aligned}
$$

for every $X \in \mathbb{N}^{n}$ and every $k \geq 0$.

A slide from lecture 12:
$n$-place predicate $P$ is function from $\mathbb{N}^{n}$ to $\{$ true, false $\}$
characteristic function $\chi_{P}$ defined by

$$
\chi_{P}(X)= \begin{cases}1 & \text { if } P(X) \text { is true } \\ 0 & \text { if } P(X) \text { is false }\end{cases}
$$

We say $P$ is primitive recursive. . .

A slide from lecture 12:

## Theorem 10.6.

The two-place predicates $L T, E Q, G T, L E, G E$, and $N E$ are primitive recursive.
(LT stands for "less than," and the other five have similarly intuitive abbreviations.)
If $P$ and $Q$ are any primitive recursive $n$-place predicates, then $P \wedge Q, P \vee Q$ and $\neg P$ are primitive recursive.

## Proof. . .

A slide from lecture 12:

## Theorem 10.7.

Suppose $f_{1}, f_{2}, \ldots, f_{k}$ are primitive recursive functions from $\mathbb{N}^{n}$ to $\mathbb{N}$,
$P_{1}, P_{2}, \ldots, P_{k}$ are primitive recursive $n$-place predicates, and for every $X \in \mathbb{N}^{n}$,
exactly one of the conditions $P_{1}(X), P_{2}(X), \ldots, P_{k}(X)$ is true.
Then the function $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ defined by

$$
f(X)=\left\{\begin{array}{cl}
f_{1}(X) & \text { if } P_{1}(X) \text { is true } \\
f_{2}(X) & \text { if } P_{2}(X) \text { is true } \\
\ldots & \\
f_{k}(X) & \text { if } P_{k}(X) \text { is true }
\end{array}\right.
$$

is primitive recursive.

## Proof. . .

## Exercise.

Let $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ be a primitive recursive function.
Show that the predicate $P: \mathbb{N}^{n+1} \rightarrow\{$ true, false $\}$ defined by

$$
P(X, y)=(f(X, y)=0)
$$

is primitive recursive.
10.2. Quantification, Minimalization, and $\mu$-Recursive Functions

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

## PR:

total and computable

Turing-computable functions: not necessarily total

## Unbounded quantification

$\operatorname{Sq}(x, y)=\left(y^{2}=x\right)$
$H(x, y)=T_{u}$ stopt na precies $y$ stappen voor invoer $s_{x}$

## Definition 10.9. Bounded Quantifications

Let $P$ be an $(n+1)$-place predicate. The bounded existential quantification of $P$ is the $(n+1)$-place predicate $E_{P}$ defined by $E_{P}(X, k)=$ (there exists $y$ with $0 \leq y \leq k$ such that $P(X, y)$ is true) The bounded universal quantification of $P$ is the $(n+1)$-place predicate $A_{P}$ defined by

$$
A_{P}(X, k)=(\text { for every } y \text { satifying } 0 \leq y \leq k, P(X, y) \text { is true })
$$

Theorem 10.10.

If $P$ is a primitive recursive $(n+1)$-place predicate, both the predicates $E_{P}$ and $A_{P}$ are also primitive recursive.

Proof. . .

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

## PR:

total and computable

Turing-computable functions: not necessarily total

Definition 10.11. Bounded Minimalization

For an ( $n+1$ )-place predicate $P$, the bounded minimalization of $P$ is the function $m_{p}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{p}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$

## Definition 10.11. Bounded Minimalization

For an ( $n+1$ )-place predicate $P$, the bounded minimalization of $P$ is the function $m_{P}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ defined by
$m_{P}(X, k)= \begin{cases}\min \{y \mid 0 \leq y \leq k \text { and } P(X, y)\} & \text { if this set is not empty } \\ k+1 & \text { otherwise }\end{cases}$

The symbol $\mu$ is often used for the minimalization operator, and we sometimes write

$$
m_{P}(X, k)=\stackrel{k}{\mu} y[P(X, y)]
$$

An important special case is that in which $P(X, y)$ is $(f(X, y)=0)$, for some $f: \mathbb{N}^{n+1} \rightarrow \mathbb{N}$. In this case $m_{P}$ is written $m_{f}$ and referred to as the bounded minimalization of $f$.

## Theorem 10.12.

If $P$ is a primitive recursive $(n+1)$-place predicate, its bounded minimalization $m_{P}$ is a primitive recursive function. Proof. . .

Example 10.13. The $n$th Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

Example 10.13. The $n$th Prime Number

$$
\begin{aligned}
& \operatorname{PrNo}(0)=2 \\
& \operatorname{PrNo}(1)=3 \\
& \operatorname{PrNo}(2)=5
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Prime}(n)=(n \geq 2) \wedge \neg(\text { there exists } y \text { such that } \\
& y \geq 2 \wedge y \leq n-1 \wedge \operatorname{Mod}(n, y)=0)
\end{aligned}
$$

Example 10.13. The $n$th Prime Number
Let

$$
P(x, y)=(y>x \wedge \operatorname{Prime}(y))
$$

Then

$$
\begin{aligned}
\operatorname{PrNo}(0) & =2 \\
\operatorname{PrNo}(k+1) & =m_{P}(\operatorname{PrNo}(k),(\operatorname{PrNo}(k))!+1)
\end{aligned}
$$

is primitive recursive, with $h\left(x_{1}, x_{2}\right)=\ldots$

## Exercise 10.19.

Show that each of the following functions is primitive recursive.
b. $f: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined by $f(x, y)=\min \{x, y\}$
c. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=\lfloor\sqrt{x}\rfloor$
(the largest natural number less than or equal to $\sqrt{x}$ )
d. $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=\left\lfloor\log _{2}(x+1)\right\rfloor$

## Exercise 10.23.

In addition to the bounded minimalization of a predicate, we might define the bounded maximalization of a predicate $P$ to be the function $m^{P}$ defined by
$m^{P}(X, k)= \begin{cases}\max \{y \leq k \mid P(x, y) \text { is true }\} & \text { if this set is not empty } \\ 0 & \text { otherwise }\end{cases}$
a. Show $m^{P}$ is primitive recursive by finding two primitive recursive functions from which it can be obtained by primitive recursion.
b. Show $m^{P}$ is primitive recursive by using bounded minimalization.

