
Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

(werk-)college 13, 6 mei 2014

10. Computable Functions

10.2. Quantification, Minimalization, and µ-Recursive

Functions

1



Exercise 7.37.

Show that if there is TM T computing the function f : N → N,

then there is another one, T ′, whose tape alphabet is {1}.

2



Exercise.

How many Turing machines are there having n nonhalting states

q0, q1, . . . , qn−1 and tape alphabet {0,1} ?

3



Exercise 10.2.

The busy-beaver function b : N → N is defined as follows.

The value b(0) is 0.

For n > 0, there are only a finite number of Turing machines hav-

ing n nonhalting states q0, q1, . . . , qn−1 and tape alphabet {0,1}.
Let T0, T1, . . . , Tm be the TMs of this type that eventually halt

on input 1n, and for each i, let ni be the number of 1’s that

Ti leaves on its tape when it halts after processing the input

string 1n. The number b(n) is defined to be the maximum of

the numbers n0, n1, . . . , nm.

Show that the total function b : N → N is not computable.

Suggestion: Suppose for the sake of contradiction that Tb is

a TM that computes b. Then we can assume without loss of

generality that Tb has tape-alfabet {0,1}.
4



A slide from lecture 12:

Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k ≥ 0 and each a ≥ 0, the
constant function Ck

a : Nk → N is defined by the formula

Ck
a(X) = a for every X ∈ N

k

2. The successor function s : N → N is defined by the formula

s(x) = x+1

3. Projection functions: For each k ≥ 1 and each i with 1 ≤
i ≤ k, the projection function pki : Nk → N is defined by the
formula

pki (x1, x2, . . . , xk) = xi

5



A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive

Recursion

1. Suppose f is a partial function from N
k to N, and for each i

with 1 ≤ i ≤ k, gi is a partial function from N
m to N.

The partial function obtained from f and g1, g2, . . . , gk by

composition is the partial function h from N
m to N defined

by the formula

h(X) = f(g1(X), g2(X), . . . , gk(X)) for every X ∈ N
m

6



A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive

Recursion (continued)

2. Suppose n ≥ 0 and g and h are functions of n and n + 2

variables, respectively. (By “a function of 0 variables,” we

mean simply a constant.)

The function obtained from g and h by the operation of

primitive recursion is the function f : Nn+1 → N defined by

the formulas

f(X,0) = g(X)

f(X, k +1) = h(X, k, f(X, k))

for every X ∈ N
n and every k ≥ 0.

7



A slide from lecture 12:

n-place predicate P is function from N
n to {true, false}

characteristic function χP defined by

χP (X) =

{

1 if P (X) is true
0 if P (X) is false

We say P is primitive recursive. . .

8



A slide from lecture 12:

Theorem 10.6.

The two-place predicates LT , EQ, GT , LE , GE , and NE are

primitive recursive.

(LT stands for “less than,” and the other five have similarly

intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then

P ∧Q, P ∨Q and ¬P are primitive recursive.

Proof. . .

9



A slide from lecture 12:

Theorem 10.7.

Suppose f1, f2, . . . , fk are primitive recursive functions from N
n

to N,
P1, P2, . . . , Pk are primitive recursive n-place predicates,
and for every X ∈ N

n,
exactly one of the conditions P1(X), P2(X), . . . , Pk(X) is true.

Then the function f : Nn → N defined by

f(X) =



















f1(X) if P1(X) is true
f2(X) if P2(X) is true
. . .

fk(X) if Pk(X) is true

is primitive recursive.

Proof. . .

10



Exercise.

Let f : Nn+1 → N be a primitive recursive function.

Show that the predicate P : Nn+1 → {true, false} defined by

P (X, y) = (f(X, y) = 0)

is primitive recursive.

11



10.2. Quantification, Minimalization, and
µ-Recursive Functions

12



A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

13



Unbounded quantification

Sq(x, y) = (y2 = x)

H(x, y) = Tu stopt na precies y stappen voor invoer sx

14



Definition 10.9. Bounded Quantifications

Let P be an (n + 1)-place predicate. The bounded existential

quantification of P is the (n+1)-place predicate EP defined by

EP (X, k) = (there exists y with 0 ≤ y ≤ k such that P (X, y) is true)

The bounded universal quantification of P is the (n + 1)-place

predicate AP defined by

AP (X, k) = (for every y satifying 0 ≤ y ≤ k, P (X, y) is true)

15



Theorem 10.10.

If P is a primitive recursive (n+1)-place predicate,

both the predicates EP and AP are also primitive recursive.

Proof. . .

16



A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR:

total and computable

Turing-computable functions:

not necessarily total

17



Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mp : Nn+1 → N defined by

mp(X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

18



Definition 10.11. Bounded Minimalization

For an (n+1)-place predicate P , the bounded minimalization of

P is the function mP : Nn+1 → N defined by

mP (X, k) =

{

min{y | 0 ≤ y ≤ k and P (X, y)} if this set is not empty
k +1 otherwise

The symbol µ is often used for the minimalization operator, and

we sometimes write

mP (X, k) =
k
µ y[P (X, y)]

An important special case is that in which P (X, y) is (f(X, y) = 0),

for some f : Nn+1 → N. In this case mP is written mf and referred

to as the bounded minimalization of f .

19



Theorem 10.12.

If P is a primitive recursive (n+1)-place predicate,

its bounded minimalization mP is a primitive recursive function.

Proof. . .

20



Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

21



Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5

Prime(n) = (n ≥ 2) ∧ ¬(there exists y such that

y ≥ 2 ∧ y ≤ n− 1 ∧Mod(n, y) = 0)

22



Example 10.13. The nth Prime Number

Let

P (x, y) = (y > x ∧ Prime(y))

Then

PrNo(0) = 2

PrNo(k +1) = mP (PrNo(k), (PrNo(k))! + 1)

is primitive recursive, with h(x1, x2) = . . .

23



Exercise 10.19.

Show that each of the following functions is primitive recursive.

b. f : N2 → N defined by f(x, y) = min{x, y}

c. f : N → N defined by f(x) = ⌊√x⌋
(the largest natural number less than or equal to

√
x)

d. f : N → N defined by f(x) = ⌊log2(x+1)⌋

24



Exercise 10.23.

In addition to the bounded minimalization of a predicate,

we might define the bounded maximalization of a predicate P to

be the function mP defined by

mP (X, k) =

{

max{y ≤ k | P (x, y) is true} if this set is not empty
0 otherwise

a. Show mP is primitive recursive by finding two primitive re-

cursive functions from which it can be obtained by primitive

recursion.

b. Show mP is primitive recursive by using bounded minimaliza-

tion.

25


