Fundamentele Informatica 3
voorjaar 2014
http://www.liacs.nl/home/rvvliet/fi3/
Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777
rvvliet(at)liacs(dot)nl
(werk-)college 13, 6 mei 2014
10. Computable Functions

10.2. Quantification, Minimalization, and u-Recursive
Functions

EXxercise 7.37.

Show that if there is TM T' computing the function f : N — N,
then there is another one, T’, whose tape alphabet is {1}.

EXxercise.

How many Turing machines are there having n nonhalting states
70,91, - --,qn—1 and tape alphabet {0,1} ?

Exercise 10.2.

The busy-beaver function b . N — N is defined as follows.

The value b(0) is O.

For n > 0O, there are only a finite number of Turing machines hav-
ing n nonhalting states qg,q1,..-,9,—1 and tape alphabet {0, 1}.
Let 1o,17,...,Tm be the TMs of this type that eventually halt
on input 1™, and for each 7z, let n; be the number of 1's that
T; leaves on its tape when it halts after processing the input
string 1™. The number b(n) is defined to be the maximum of
the numbers ng,n1,...,nm.

Show that the total function b : N — N is not computable.
Suggestion: Suppose for the sake of contradiction that T is
a TM that computes b. Then we can assume without loss of
generality that T, has tape-alfabet {0, 1}.

A slide from lecture 12:
Definition 10.1. Initial Functions

The initial functions are the following:

1. Constant functions: For each k£ > 0 and each a > 0, the
constant function C* : N¥ — N is defined by the formula

CF(X)=a for every X € NF

2. The successor function s: N — N is defined by the formula

s(zr)=x4+1

3. Projection functions: For each kK > 1 and each ¢ with 1 <
i < k, the projection function p¥ : N*¥ — N is defined by the
formula

pF(zq,xo,...,2) = 24

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive
Recursion

1. Suppose f is a partial function from N* to N, and for each 2
with 1 <4 <k, g; is a partial function from N to N.
The partial function obtained from f and gi1,92,...,9r by
composition is the partial function A from N to N defined
by the formula

h(X) = f(g1(X),92(X),...,9.(X)) for every X € N

A slide from lecture 12:

Definition 10.2. The Operations of Composition and Primitive
Recursion (continued)

2. Suppose n > 0 and g and h are functions of n and n 4 2
variables, respectively. (By *“a function of O variables,” we
mean simply a constant.)

The function obtained from ¢g and h by the operation of
primitive recursion is the function f : N*t+1 s N defined by
the formulas

f(X,0) = g(X)
f(X,kE+1) = h(X,k, f(X,k))
for every X € N and every k > 0.

A slide from lecture 12:
n-place predicate P is function from N™ to {true, false}

characteristic function xp defined by

|1 if P(X) is true
xp(X) = { 0 if P(X) is false

We say P is primitive recursive. . .

A slide from lecture 12:
Theorem 10.6.

The two-place predicates LT, EQ, GT, LE, GE, and NE are
primitive recursive.

(LT stands for “less than,” and the other five have similarly
intuitive abbreviations.)

If P and Q are any primitive recursive n-place predicates, then
PAQ, PV (Q and =P are primitive recursive.

Proof...

A slide from lecture 12:

Theorem 10.7.

Suppose fq, fo,..., fi are primitive recursive functions from N"
to N,
Py, P>, ..., P are primitive recursive n-place predicates,

and for every X € N,
exactly one of the conditions P1(X), Po(X),..., P.(X) is true.
Then the function f: N" — N defined by

(f1(X) if P1(X) is true

f(X) =« fo(X) if Po(X) is true

\ fk(X> if Pk(X> is true
IS primitive recursive.

Proof...
10

EXxercise.
Let f: N*t1 5 N be a primitive recursive function.

Show that the predicate P : N*T1 — {true, false} defined by

P(X,y) = (f(X,y) =0)

IS primitive recursive.

11

10.2. Quantification, Minimalization, and
u-Recursive Functions

12

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
13

Unbounded quantification

5q(z,y) =

H(z,y) =

(y? =)

Ty, stopt na precies y stappen voor invoer sy

14

Definition 10.9. Bounded Quantifications
Let P be an (n + 1)-place predicate. The bounded existential
quantification of P is the (n + 1)-place predicate Ep defined by

Ep(X,k) = (there exists y with 0 <y < k such that P(X,y) is true)

The bounded universal quantification of P is the (n + 1)-place
predicate Ap defined by

Ap(X, k) = (for every y satifying 0 <y <k, P(X,y) is true)

15

Theorem 10.10.

If P is a primitive recursive (n + 1)-place predicate,
both the predicates Ep and Ap are also primitive recursive.

Proof...

16

A slide from lecture 12:

Theorem 10.4.

Every primitive recursive function is total and computable.

PR: Turing-computable functions:
total and computable not necessarily total
17

Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function m, : N*T1 — N defined by

(X, k) = min{y | 0 <y <k and P(X,y)} if this set is not empty
B R otherwise

18

Definition 10.11. Bounded Minimalization

For an (n+ 1)-place predicate P, the bounded minimalization of
P is the function mp : N*T1 N defined by

| min{fy| 0<y<kand P(X,y)} if this set is not empty
mp(X, k) = { k+1 otherwise

The symbol u is often used for the minimalization operator, and
we sometimes write

mp(X, k) = b y[P(X,y)]

An important special case is that in which P(X,vy) is (f(X,y) = 0),
for some f : N**1 5 N. In this case mp is written m and referred

to as the bounded minimalization of f.
19

Theorem 10.12.

If P is a primitive recursive (n + 1)-place predicate,
its bounded minimalization mp is a primitive recursive function.

Proof...

20

Example 10.13. The nth Prime Number

PrNo(0) = 2
PrNo(1) = 3
PrNo(2) =5

21

Example 10.13. The nth Prime Number

PrNo(0) = 2

PrNo(1) = 3

PrNo(2) = 5
Prime(n)

(n > 2) A =(there exists y such that
y>2ANy<n-—1AMod(n,y) =0)

22

Example 10.13. The nth Prime Number

Let
P(z,y) = (y>x AN Prime(y))
Then
PrNo(0) = 2
PrNo(k+ 1) = mp(PrNo(k),(PrNo(k))!'+ 1)

is primitive recursive, with h(xq,22) = ...

23

Exercise 10.19.
Show that each of the following functions is primitive recursive.
b. f: N2 — N defined by f(z,y) = min{z,y}

Cc. f: N — N defined by f(z) = |/z]
(the largest natural number less than or equal to /x)

d. f: N — N defined by f(xz) = |logs(z + 1)]

24

Exercise 10.23.

In addition to the bounded minimalization of a predicate,
we might define the bounded maximalization of a predicate P to
be the function m¥ defined by

max{y < k| P(x,y) is true} if this set is not empty

P _
m (X, k) = { 0 otherwise

a. Show m?’ is primitive recursive by finding two primitive re-
cursive functions from which it can be obtained by primitive
recursion.

b. Show m?’ is primitive recursive by using bounded minimaliza-
tion.
25

