Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 11, 22 april 2014

9.5. Undecidable Problems Involving Context-Free Languages 9. Undecidable Problems

A slide from lecture 9:

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 $(P_1 \le P_2)$ • if there is an algorithm
• that finds, for an arbitrary instance I of P_1 , an instance F(I)

- of P_2 , such that

for every I the answers for the two instances or I is a yes-instance of P_1 if and only if F(I) is a yes-instance of P_2 . are the same,

Ν

A slide from lecture 9:

Theorem 9.7. Suppose $L_1\subseteq \Sigma_1^*,\ L_2\subseteq \Sigma_2^*,$ and $L_1\le L_2.$ If L_2 is recursive, then L_1 is recursive.

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

ω

4

A slide from lecture 10:

9.4. Post's Correspondence Problem

Instance:

A slide from lecture 10:

Definition 9.14. Post's Correspondence Problem

An instance of Post's correspondence problem (PCP) is a set

 $\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$ of pairs, where $n\geq 1$ and the α_i 's and β_i 's are all nonnull strings over an alphabet Σ .

The decision problem is this:

Match:

101 10

010 \vdash

100 01

10 0

100 0

100 0

101

100 01

10 0

010 1

10

100 0

Instance:

A slide from lecture 10:

Given an instance of this type, do there exist a positive integer k and a sequence of integers i_1,i_2,\ldots,i_k , with each i_j satisfying $1\leq i_j\leq n$, satisfying

 $\alpha_{i_1}\alpha_{i_2}\dots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\dots\beta_{i_k}$

 i_1,i_2,\ldots,i_k need not all be distinct

A slide from lecture 10:

Theorem 9.17.

Post's correspondence problem is undecidable

9.5. Undecidable Problems
Involving Context-Free Languages

For an instance

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of PCP, let...

CFG
$$G_{lpha}$$
 be defined by productions

$$S_{\alpha} \to \alpha_i S_{\alpha} c_i \mid \alpha_i c_i \quad (1 \le i \le n)$$

CFG
$$G_eta$$
 be defined by productions

$$S_{\beta} \to \beta_i S_{\beta} c_i \mid \beta_i c_i \quad (1 \le i \le n)$$

 G_{lpha} and $G_{eta} \ldots$

9

Example.

Let I be the following instance of PCP:

010

 \vdash

10

Theorem 9.20.
These two problems are undecidable:

- CFGNonEmptyIntersection: Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?
- Ņ IsAmbiguous: Given a CFG G, is G ambiguous?

Proof...

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'succesful computation' of T for x, $z_0 = q_0 \Delta x$

and z_n is accepting configuration.

11

12

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'succesful computation' of T for x,

, $z_0 = q_0 \Delta x$ and z_n is accepting configuration.

Successive configurations z_i and z_{i+1} are almost identical; hence $z_i\#z_{i+1}$ cannot be described by CFG, cf. $XX=\{xx\mid x\in\{a,b\}^*\}$.

 $z_i\#z_{i+1}^r$ is almost a palindrome, and can be described by CFG.

Lemma.

The language

is context-free. L_1 = $\{z\#(z')^r\#\mid z \text{ and } z' \text{ are config's of } T \text{ for which } z\vdash z'\}$

Proof...

14

Definition 9.21. Valid Computations of a TM

Let $T=(Q,\Sigma,\Gamma,q_0,\delta)$ be a Turing machine

A valid computation of T is a string of the form

 $z_0 # z_1^T # z_2 # z_3^T \dots # z_n #$

if n is even, or

 $z_0 # z_1^r # z_2 # z_3^r \dots # z_n^r #$

if n is odd, where in either case, # is a symbol not in Γ , and the strings z_i represent successive configurations of T on some input string x, starting with the initial configuration z_0 and ending with an accepting configuration.

The set of valid computations of T will be denoted by \mathcal{C}_{T} .

Theorem 9.22.

- For a TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$, the set C_T of valid computations of T is the intersection of two context-free languages, and its complement C_T' is a context-free language.

Proof...

16

Theorem 9.22.

For a TM $T=(Q,\Sigma,\Gamma,q_0,\delta)$

- \bullet the set C_T of valid computations of T is the intersection of two context-free languages, \bullet and its complement C_T' is a context-free language.

Proof. Let

```
_{A_{1}}^{A}
 \begin{cases} z\#\mid z \text{ is initial configuration of } T \\ z\#\mid z \text{ is accepting configuration of } T \} \\ \{z^r\#\mid z \text{ is accepting configuration of } T \} 
                                                                                                                                                                                  \{z\#(z')^r\#\mid \ z \ \text{and} \ z' \ \text{are config's of} \ T \ \text{for which} \ z\vdash z'\}   \{z^r\#z'\#\mid \ z \ \text{and} \ z' \ \text{are config's of} \ T \ \text{for which} \ z\vdash z'\}
```

17

 $C_T = L_3 \cap L_4$

where

$$L_3 = IL_2^*(A_1 \cup \{\Lambda\})$$

 $L_4 = L_1^*(A \cup \{\Lambda\})$

for each of which we can algorithmically construct a CFG

18

If $x \in C_T'$ (i.e., $x \notin C_T$), then

If $x \in C_T'$ (i.e., $x \notin C_T$), then...

- one 1. Either, x does not end with # Otherwise, let $x=z_0\#z_1\#\ldots\#z_k\#$ 2. Or, for some even i,z_i is not configuration of T3. Or, for some odd i,z_i^T is not configuration of T4. Or z_0 is not initial configuration of T5. Or z_k is neither accepting configuration, nor the Or z_k is neither accepting configuration, nor the reverse of
- 6. Or, for some even $i, z_i \not\vdash z_{i+1}^r$ 7. Or, for some odd $i, z_i^r \not\vdash z_{i+1}$

20

19

If $x \in C_T'$ (i.e., $x \notin C_T$), then

- 1. Either, x does not end with # Otherwise, let $x=z_0\#z_1\#\ldots\#z_k\#$ 2. Or, for some even i,z_i is not configuration of T3. Or, for some odd i,z_i^* is not configuration of T4. Or z_0 is not initial configuration of T5. Or z_k is neither accepting configuration, nor the reverse of one
- 6. Or, for some even $i, z_i \not\vdash z_{i+1}^r$ 7. Or, for some odd $i, z_i^r \not\vdash z_{i+1}$

Hence, C_T^\prime is union of seven context-free languages, for each of which we can algorithmically construct a CFG

Corollary.

The decision problem

CFGNonEmptyIntersection: Given two CFGs G_1 and G_2 , is $L(G_1)\cap L(G_2)$ nonempty?

is undecidable (cf. Theorem 9.20(1)).

Proof.

AcceptsSomething: Given a TM T, is $L(T) \neq \emptyset$?

Prove that $AcceptsSomething \leq CFGNonEmptyIntersection$

Study this result yourself.

22

Theorem 9.23. The decision problem

CFGGeneratesAll: Given a CFG G with terminal alphabet Σ , is $L(G) = \Sigma^*$?

is undecidable

AcceptsNothing: Given a TM T, is $L(T) = \emptyset$

Prove that $AcceptsNothing \leq CFGGeneratesAll$

Study this result yourself

Undecidable Decision Problems (we have discussed)

23