Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 11, 22 april 2014

9. Undecidable Problems9.5. Undecidable ProblemsInvolving Context-Free Languages

Definition 9.6. Reducing One Decision Problem to Another, and Reducing One Language to Another

Suppose P_1 and P_2 are decision problems. We say P_1 is reducible to P_2 ($P_1 \leq P_2$)

- if there is an algorithm
- that finds, for an arbitrary instance I of P_1 , an instance F(I) of P_2 ,
- such that

for every I the answers for the two instances are the same, or I is a yes-instance of P_1

if and only if F(I) is a yes-instance of P_2 .

Theorem 9.7. Suppose $L_1 \subseteq \Sigma_1^*$, $L_2 \subseteq \Sigma_2^*$, and $L_1 \leq L_2$. If L_2 is recursive, then L_1 is recursive.

Suppose P_1 and P_2 are decision problems, and $P_1 \leq P_2$. If P_2 is decidable, then P_1 is decidable.

Proof...

9.4. Post's Correspondence Problem

Instance:

Instance:

Match:

10	1	01	0	100	100	0	100
101	010	100	10	0	0	10	0

Definition 9.14. Post's Correspondence Problem

An instance of Post's correspondence problem (PCP) is a set

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of pairs, where $n \ge 1$ and the α_i 's and β_i 's are all nonnull strings over an alphabet Σ .

The decision problem is this:

Given an instance of this type, do there exist a positive integer k and a sequence of integers i_1, i_2, \ldots, i_k , with each i_j satisfying $1 \le i_j \le n$, satisfying

$$\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$$
?

 i_1, i_2, \ldots, i_k need not all be distinct.

Theorem 9.17.

Post's correspondence problem is undecidable.

9.5. Undecidable Problems Involving Context-Free Languages

For an instance

$$\{(\alpha_1,\beta_1),(\alpha_2,\beta_2),\ldots,(\alpha_n,\beta_n)\}$$

of PCP, let...

CFG G_{α} be defined by productions

$$S_{\alpha} \to \alpha_i S_{\alpha} c_i \mid \alpha_i c_i \quad (1 \le i \le n)$$

CFG G_β be defined by productions

$$S_{\beta} \rightarrow \beta_i S_{\beta} c_i \mid \beta_i c_i \quad (1 \le i \le n)$$

Example.

Let *I* be the following instance of PCP:

 G_{α} and G_{β} ...

Theorem 9.20.

These two problems are undecidable:

- 1. CFGNonEmptyIntersection: Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?
- 2. *IsAmbiguous*: Given a CFG *G*, is *G* ambiguous?

Proof...

Let T be TM, let x be string accepted by T, and let

$$z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n$$

be 'succesful computation' of T for x,

i.e., $z_0 = q_0 \Delta x$

and z_n is accepting configuration.

Let T be TM, let x be string accepted by T, and let

```
z_0 \vdash z_1 \vdash z_2 \vdash z_3 \ldots \vdash z_n
```

be 'succesful computation' of T for x,

i.e., $z_0 = q_0 \Delta x$

and z_n is accepting configuration.

Successive configurations z_i and z_{i+1} are almost identical; hence $z_i \# z_{i+1}$ cannot be described by CFG, cf. $XX = \{xx \mid x \in \{a, b\}^*\}.$

 $z_i \# z_{i+1}^r$ is almost a palindrome, and *can* be described by CFG.

Lemma.

The language

 $L_1 = \{z \# (z')^r \# \mid z \text{ and } z' \text{ are config's of } T \text{ for which } z \vdash z'\}$ is context-free.

Proof...

Definition 9.21. Valid Computations of a TM

Let $T = (Q, \Sigma, \Gamma, q_0, \delta)$ be a Turing machine.

A valid computation of T is a string of the form

 $z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n \#$

if n is even, or

$$z_0 \# z_1^r \# z_2 \# z_3^r \dots \# z_n^r \#$$

if n is odd,

where in either case, # is a symbol not in Γ ,

and the strings z_i represent successive configurations of T on some input string x, starting with the initial configuration z_0 and ending with an accepting configuration.

The set of valid computations of T will be denoted by C_T .

Theorem 9.22.

For a TM $T = (Q, \Sigma, \Gamma, q_0, \delta)$,

- the set C_T of valid computations of T is the intersection of two context-free languages,
- and its complement C'_T is a context-free language.

Proof...

Theorem 9.22.

For a TM $T = (Q, \Sigma, \Gamma, q_0, \delta)$,

• the set C_T of valid computations of T is the intersection of two context-free languages,

• and its complement C'_T is a context-free language.

Proof. Let

$$L_{1} = \{z \# (z')^{r} \# \mid z \text{ and } z' \text{ are config's of } T \text{ for which } z \vdash z'\}$$

$$L_{2} = \{z^{r} \# z' \# \mid z \text{ and } z' \text{ are config's of } T \text{ for which } z \vdash z'\}$$

$$I = \{z \# \mid z \text{ is initial configuration of } T\}$$

$$A = \{z \# \mid z \text{ is accepting configuration of } T\}$$

$$A_{1} = \{z^{r} \# \mid z \text{ is accepting configuration of } T\}$$

$$C_T = L_3 \cap L_4$$

where

$$L_3 = IL_2^*(A_1 \cup \{\Lambda\})$$
$$L_4 = L_1^*(A \cup \{\Lambda\})$$

for each of which we can algorithmically construct a CFG

If $x \in C'_T$ (i.e., $x \notin C_T$), then...

If $x \in C'_T$ (i.e., $x \notin C_T$), then

1. Either, x does not end with #

Otherwise, let $x = z_0 \# z_1 \# \dots \# z_k \#$

- 2. Or, for some even i, z_i is not configuration of T
- 3. Or, for some odd *i*, z_i^r is not configuration of T
- 4. Or z_0 is not initial configuration of T

5. Or z_k is neither accepting configuration, nor the reverse of one

- 6. Or, for some even *i*, $z_i \not\vdash z_{i+1}^r$
- 7. Or, for some odd *i*, $z_i^r \not\vdash z_{i+1}$

If $x \in C'_T$ (i.e., $x \notin C_T$), then

1. Either, x does not end with #

Otherwise, let $x = z_0 \# z_1 \# \dots \# z_k \#$

- 2. Or, for some even i, z_i is not configuration of T
- 3. Or, for some odd *i*, z_i^r is not configuration of *T*
- 4. Or z_0 is not initial configuration of T

5. Or z_k is neither accepting configuration, nor the reverse of one

- 6. Or, for some even *i*, $z_i \not\vdash z_{i+1}^r$
- 7. Or, for some odd *i*, $z_i^r \not\vdash z_{i+1}$

Hence, C'_T is union of seven context-free languages, for each of which we can algorithmically construct a CFG

Corollary.

The decision problem

CFGNonEmptyIntersection: Given two CFGs G_1 and G_2 , is $L(G_1) \cap L(G_2)$ nonempty?

is undecidable (cf. Theorem 9.20(1)).

Proof.

Let AcceptsSomething: Given a TM T, is $L(T) \neq \emptyset$?

Prove that *AcceptsSomething* \leq *CFGNonEmptyIntersection*

Study this result yourself.

Theorem 9.23. The decision problem

CFGGeneratesAll: Given a CFG G with terminal alphabet Σ , is $L(G) = \Sigma^*$?

is undecidable.

Proof.

Let AcceptsNothing: Given a TM T, is $L(T) = \emptyset$?

Prove that AcceptsNothing < CFGGeneratesAll ...

Study this result yourself.

Undecidable Decision Problems (we have discussed)

