
Fundamentele Informatica 3

voorjaar 2014

http://www.liacs.nl/home/rvvliet/fi3/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777

rvvliet(at)liacs(dot)nl

college 11, 22 april 2014

9. Undecidable Problems

9.5. Undecidable Problems

Involving Context-Free Languages

1



A slide from lecture 9:

Definition 9.6. Reducing One Decision Problem to Another,

and Reducing One Language to Another

Suppose P1 and P2 are decision problems. We say P1 is reducible

to P2 (P1 ≤ P2)

• if there is an algorithm

• that finds, for an arbitrary instance I of P1, an instance F (I)

of P2,

• such that

for every I the answers for the two instances are the same,

or I is a yes-instance of P1

if and only if F (I) is a yes-instance of P2.

2



A slide from lecture 9:

Theorem 9.7. Suppose L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2, and L1 ≤ L2. If L2

is recursive, then L1 is recursive.

Suppose P1 and P2 are decision problems, and P1 ≤ P2. If P2 is

decidable, then P1 is decidable.

Proof. . .

3



A slide from lecture 10:

9.4. Post’s Correspondence Problem

Instance:

10

101

01

100

0

10

100

0

1

010

4



A slide from lecture 10:

Instance:

10

101

01

100

0

10

100

0

1

010

Match:

10

101

1

010

01

100

0

10

100

0

100

0

0

10

100

0

5



A slide from lecture 10:

Definition 9.14. Post’s Correspondence Problem

An instance of Post’s correspondence problem (PCP) is a set

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of pairs, where n ≥ 1 and the αi’s and βi’s are all nonnull strings
over an alphabet Σ.

The decision problem is this:

Given an instance of this type, do there exist a positive integer
k and a sequence of integers i1, i2, . . . , ik, with each ij satisfying
1 ≤ ij ≤ n, satisfying

αi1αi2 . . . αik = βi1βi2 . . . βik ?

i1, i2, . . . , ik need not all be distinct.

6



A slide from lecture 10:

Theorem 9.17.

Post’s correspondence problem is undecidable.

7



9.5. Undecidable Problems
Involving Context-Free Languages

8



For an instance

{(α1, β1), (α2, β2), . . . , (αn, βn)}

of PCP, let. . .

CFG Gα be defined by productions

Sα → αiSαci | αici (1 ≤ i ≤ n)

CFG Gβ be defined by productions

Sβ → βiSβci | βici (1 ≤ i ≤ n)

9



Example.

Let I be the following instance of PCP:

10

101

01

100

0

10

100

0

1

010

Gα and Gβ. . .

10



Theorem 9.20.

These two problems are undecidable:

1. CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

2. IsAmbiguous:

Given a CFG G, is G ambiguous?

Proof. . .

11



Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

12



Let T be TM, let x be string accepted by T , and let

z0 ⊢ z1 ⊢ z2 ⊢ z3 . . . ⊢ zn

be ‘succesful computation’ of T for x,

i.e., z0 = q0∆x

and zn is accepting configuration.

Successive configurations zi and zi+1 are almost identical;

hence zi#zi+1 cannot be described by CFG,

cf. XX = {xx | x ∈ {a, b}∗}.

zi#zri+1 is almost a palindrome, and can be described by CFG.

13



Lemma.

The language

L1 = {z#(z′)r# | z and z′ are config’s of T for which z ⊢ z′}

is context-free.

Proof. . .

14



Definition 9.21. Valid Computations of a TM

Let T = (Q,Σ,Γ, q0, δ) be a Turing machine.

A valid computation of T is a string of the form

z0#zr1#z2#zr3 . . .#zn#

if n is even, or

z0#zr1#z2#zr3 . . .#zrn#

if n is odd,

where in either case, # is a symbol not in Γ,

and the strings zi represent successive configurations of T on

some input string x, starting with the initial configuration z0 and

ending with an accepting configuration.

The set of valid computations of T will be denoted by CT .

15



Theorem 9.22.

For a TM T = (Q,Σ,Γ, q0, δ),

• the set CT of valid computations of T is the intersection of

two context-free languages,

• and its complement C′
T is a context-free language.

Proof. . .

16



Theorem 9.22.

For a TM T = (Q,Σ,Γ, q0, δ),

• the set CT of valid computations of T is the intersection of

two context-free languages,

• and its complement C′
T is a context-free language.

Proof. Let

L1 = {z#(z′)r# | z and z′ are config’s of T for which z ⊢ z′}

L2 = {zr#z′# | z and z′ are config’s of T for which z ⊢ z′}

I = {z# | z is initial configuration of T}

A = {z# | z is accepting configuration of T}

A1 = {zr# | z is accepting configuration of T}

17



CT = L3 ∩ L4

where

L3 = IL∗
2(A1 ∪ {Λ})

L4 = L∗
1(A ∪ {Λ})

for each of which we can algorithmically construct a CFG

18



If x ∈ C′
T (i.e., x /∈ CT ), then. . .

19



If x ∈ C′
T (i.e., x /∈ CT ), then

1. Either, x does not end with #

Otherwise, let x = z0#z1# . . .#zk#

2. Or, for some even i, zi is not configuration of T

3. Or, for some odd i, zri is not configuration of T

4. Or z0 is not initial configuration of T

5. Or zk is neither accepting configuration, nor the reverse of

one

6. Or, for some even i, zi 6 ⊢ zri+1

7. Or, for some odd i, zri 6 ⊢ zi+1

20



If x ∈ C′
T (i.e., x /∈ CT ), then

1. Either, x does not end with #

Otherwise, let x = z0#z1# . . .#zk#

2. Or, for some even i, zi is not configuration of T

3. Or, for some odd i, zri is not configuration of T

4. Or z0 is not initial configuration of T

5. Or zk is neither accepting configuration, nor the reverse of

one

6. Or, for some even i, zi 6 ⊢ zri+1

7. Or, for some odd i, zri 6 ⊢ zi+1

Hence, C′
T is union of seven context-free languages,

for each of which we can algorithmically construct a CFG

21



Corollary.

The decision problem

CFGNonEmptyIntersection:

Given two CFGs G1 and G2, is L(G1) ∩ L(G2) nonempty?

is undecidable (cf. Theorem 9.20(1)).

Proof.

Let

AcceptsSomething: Given a TM T , is L(T ) 6= ∅ ?

Prove that AcceptsSomething ≤ CFGNonEmptyIntersection

Study this result yourself.

22



Theorem 9.23. The decision problem

CFGGeneratesAll: Given a CFG G with terminal alphabet

Σ, is L(G) = Σ∗ ?

is undecidable.

Proof.

Let

AcceptsNothing: Given a TM T , is L(T ) = ∅ ?

Prove that AcceptsNothing ≤ CFGGeneratesAll . . .

Study this result yourself.

23



Undecidable Decision Problems (we have discussed)

Self-Accepting

?

Accepts

?

PPPPPPPPPq

- MPCP - PCP
�
�
��

-

CFGNonEmptyIntersection

IsAmbiguous

Halts Accepts-Λ

? ?

XXXXXXXXXXXXz

AcceptsEverything

?

WritesSymbol PR (Rice)
�

�
��

?

?

?

?

A
A
AU

Subset

?

Equivalent

Accepts-L

AcceptsSomething

AcceptsTwoOrMore

AcceptsFinite

AcceptsRecursive

AcceptsNothing

?

CFGGeneratesAll

?
= reduction

?
= application of result

24


