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7.4. Combining Turing Machines

Example.

A TM for f(x) = ana(x)

x = aababba
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Example.

A TM for f(x) = ana(x)

x = aababba

∆ a a b a b b a
∆ a a∆ a b b a
∆ a a a b b a∆
∆ a a a∆ b a∆
∆ a a a b a∆∆
∆ a a a∆ a∆∆
∆ a a a a∆∆∆
∆ a a a a∆∆∆
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Example 7.20. Inserting and Deleting a Symbol

Delete: from yσz to yz

Insert(σ): from yz to yσz

N.B.: z does not contain blanks
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TM T1 computes f

TM T2 computes g

TM T1T2 computes . . .

✲T1 T2
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Example 7.17. Finding the Next Blank or the Previous Blank

NB

PB
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Example 7.18. Copying a String

Copy : from ∆x to ∆x∆x

x = abaa

8



✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲
�
�
�
�

�
�
��✒

❅
❅
❅
❅

❅
❅
❅❅❘

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁☛

✲

❅
❅
❅

❅
❅
❅
❅❅❘

✲
�
�
�

�
�
�
��✒

✲

✛

q0

ha

∆/∆,R

a/A,R

b/B,R

∆/∆,L
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A slide from lecture 2

Example 7.10. The Reverse of a String

∆a a b a b
∆Aa b a b
∆Aa b aA
∆Ba b aA
∆BA b aA
∆BA bAA
∆BA bAA
∆BABAA
∆ b a b a a
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Example 7.24. Comparing Two Strings

Equal: accept ∆x∆y if x = y,

and reject if x 6= y
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An exercise from exercise class 2

Exercise 7.17.

For each case below, draw a TM that computes the indicated

function.

e. E : {a, b}∗ × {a, b}∗ → {0,1}

defined by E(x, y) = 1 if x = y, E(x, y) = 0 otherwise.
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Example 7.25. Accepting the Language of . . .

Copy → NB → R → PB → Equal
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Example 7.25. Accepting the Language of Palindromes

Copy → NB → R → PB → Equal
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Example 7.21. Erasing the Tape

From the current position to the right
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Many notations for composition
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7.5. Multitape Turing Machines
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Example 5.3. A PDA Accepting the Language AnBn

AnBn = {aibi | i ≥ 0}

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✧✦
★✥

✧✦
★✥

✲ ✲ ✲ ✲q0 q1 q2 q3
a, Z0/aZ0 b, a/Λ Λ, Z0/Z0

✓✏a, a/aa

❄

✓✏b, a/Λ

❄
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Part of a slide from exercise class 1

Exercise 7.4.

For each of the following languages, draw a transition diagram

for a Turing machine that accepts that language.

a. AnBn = {aibi | i ≥ 0}

With two tapes. . .
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Exercise 7.4.

For each of the following languages, draw a transition diagram

for a Turing machine that accepts that language.

a. AnBn = {aibi | i ≥ 0}

With two tapes:

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✫✪
✬✩

✲ ✲ ✲ ✲q0 q1 q2 ha
(∆,∆)/(∆,∆), (R,R)

(b,∆)/(b,∆), (S,L)
(∆,∆)/(∆,∆), (S,L) (∆,∆)/(∆,∆), (S,S)

✓✏(a,∆)/(a, a), (R,R)

❄

✓✏(b, a)/(b,∆), (R,L)

❄
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A slide from exercise class 1

Exercise 7.4.

For each of the following languages, draw a transition diagram

for a Turing machine that accepts that language.

a. AnBn = {aibi | i ≥ 0}

We could also use the portion of the tape to the right of the

input, to simulate the stack of a deterministic pushdown au-

tomaton (works for any deterministic PDA!)
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Example 7.24. Comparing Two Strings

Equal: accept ∆x∆y if x = y,

and reject if x 6= y

2-tape TM. . .

22



Theorem 7.26. (informal)

For every 2-tape TM T , there is an ordinary 1-tape TM T1,

which for every input x,

• simulates the computation of T for x,

• accepts (rejects) x, if and only if T accepts (rejects) x,

• on acceptance, leaves the same output on its tape as T leaves

on its first tape.

The proof of this result does not have to be known for the exam.
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Corollary 7.27.

Every language that is accepted by a 2-tape TM can be accepted

by an ordinary 1-tape TM,

and every function that is computed by a 2-tape TM can be

computed by an ordinary TM.

This generalizes to k-tape TMs for k ≥ 3.

24



7.7. Nondeterministic Turing Machines
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A slide from lecture 2

Definition 7.1. Turing machines

A Turing machine (TM) is a 5-tuple T = (Q,Σ,Γ, q0, δ), where

Q is a finite set of states. The two halt states ha and hr are not

elements of Q.

Σ, the input alphabet, and Γ, the tape alphabet, are both finite

sets, with Σ ⊆ Γ. The blank symbol ∆ is not an element of Γ.

q0, the initial state, is an element of Q.

δ is the transition function:

δ : Q× (Γ ∪ {∆}) → (Q ∪ {ha, hr})× (Γ ∪ {∆})× {R,L, S}
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Nondeterministic Turing machine.

There may be more than one move for a state-symbol pair.

Same notation:

wpax ⊢T yqbz wpax ⊢∗
T yqbz

A string x is accepted by T if

q0∆x ⊢∗
T whay

for some strings w, y ∈ (Γ ∪ {∆})∗.

NTM useful for accepting languages, for producing output,

but not for computing function.
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Example 7.28. The Set of Composite Natural Numbers.

Use G2
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Example 7.28. The Set of Composite Natural Numbers.

NB → G2 → NB → G2 → PB → M → PB → Equal

Take x = 115
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Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}
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Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}

Deterministic TM accepting P (L) may execute following algo-

rithm for input x:

y = Λ;

while (T does not accept xy)

y is next string in Σ∗ (in canonical order);

accept;

but. . .
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Example 7.30. The Language of Prefixes of Elements of L.

Let L = L(T ). Then

P (L) = {x ∈ Σ∗ | xy ∈ L for some y ∈ Σ∗}

NB → G → Delete → PB → T
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