5

8.4. Context-Sensitive Languages and the Chomsky Hierarchy

Definition 8.16. Context-Sensitive Grammars

A context-sensitive grammar (CSG) is an unrestricted grammar in which no production is length-decreasing. In other words, every production is of the form $\alpha \rightarrow \beta$, where $|\beta| \geq |\alpha|$.

A language is a context-sensitive language (CSL) if it can be generated by a context-sensitive grammar.

Example 8.12. A Grammar Generating $\{a^n b^n c^n | n \geq 1\}$

$$S \rightarrow SABC \mid LABC$$

$$BA \rightarrow AB \ CB \rightarrow BC \ CA \rightarrow AC$$

$$LA \rightarrow a aA \rightarrow aa \ aB \rightarrow ab \ bB \rightarrow bb \ bC \rightarrow bc \ cC \rightarrow cc$$

Not context-sensitive.
Example 8.17. A CSG Generating
$$L = \{ anbn|n \geq 1 \}$$

S \rightarrow SABC | A

B \rightarrow AB CB
C \rightarrow BC CA
A \rightarrow AC

9

Definition 8.10. Linear-Bounded Automata
A linear-bounded automaton (LBA) is a 5-tuple $M = (Q, \Sigma, \Gamma, q_0, \delta)$ that is identical to a nondeterministic Turing machine, with the following exception.

There are two extra tape symbols [and] assumed not to be elements of the tape alphabet Γ.

The initial configuration of M corresponding to input x is $q_0[|x|, [\text{first square to the right of } x].$

During its computation, M is not permitted to replace either of these brackets or to move its tape head to the left of the [or to the right of the].

Theorem 8.19. If $L \subseteq \Sigma^*$ is a context-sensitive language, then there is a linear-bounded automaton that accepts L.

Proof. Much like the proof of Theorem 8.13, except

• two tape tracks instead of move past input
• reject also if we want to write on]

Theorem 8.13. For every unrestricted grammar G, there is a Turing machine T with $L(T) = L(G)$.

Proof. 1. Generate (every possible) input string for T(two copies),
2. Simulate computation of T for this input string as derivation in G on the tape of a Turing machine
3. If T reaches accept state, reconstruct original input string.

Ad 2. Move $\delta(p, a) = (q, b, R)$ of T yields production $p(\sigma_1a) \rightarrow (\sigma_1b)q$

Ad 3. Propagate σ_1 all over the string $p(\sigma_1\sigma_2) \rightarrow \sigma_1$, for $\sigma_1 \in \Sigma$

Theorem 8.20. If $L \subseteq \Sigma^*$ is accepted by a linear-bounded automaton $M = (Q, \Sigma, \Gamma, q_0, \delta)$, then there is a context-sensitive grammar G generating $L - \{\Lambda\}$.

Proof. Much like the proof of Theorem 8.14, except

• consider $\sigma_1\sigma_2$ as a single symbol
• no additional (∆∆)'s needed
• incorporate [and] in leftmost/rightmost symbols of string.
Chomsky hierarchy

3

regular languages
regular grammar
FA

2

context-free languages
context-free grammar
PDA

1

context-sensitive languages
context-sensitive grammar
LBA

0

recursive languages
unrestricted grammar
TM

Theorem 8.22.
Every context-sensitive language is recursive.

Proof...

Definition 8.23.
A set \(A \) of the same size as \(B \) or larger than \(B \). Two sets \(A \) and \(B \), either finite or infinite, are the same size if there is a bijection \(f: A \to B \). A set \(A \) is larger than \(B \) if some subset of \(A \) is as large as \(B \) but \(A \) itself is not.

Definition 8.24.
Countably infinite and countable sets. A set \(A \) is countably infinite (the same size as \(\mathbb{N} \)) if there is a bijection \(f: \mathbb{N} \to A \), or a list \(a_0, a_1, \ldots \) of elements of \(A \) such that every element of \(A \) appears exactly once in the list. A set \(A \) is countably infinite (the same size as \(\mathbb{N} \)) if there is a bijection \(f: \mathbb{N} \to A \).

Theorem 8.25.
Every infinite set has a countably infinite subset, and every subset of a countably infinite set is countable.

Example 8.26.
The set \(\mathbb{N} \times \mathbb{N} \) is countable.

Remark. (modulo \(\Lambda \))

Table

<table>
<thead>
<tr>
<th>Class</th>
<th>Language Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unrestricted</td>
</tr>
<tr>
<td>1</td>
<td>context-sensitive</td>
</tr>
<tr>
<td>2</td>
<td>context-free</td>
</tr>
<tr>
<td>3</td>
<td>regular</td>
</tr>
<tr>
<td>4</td>
<td>regular expression</td>
</tr>
</tbody>
</table>

Chomsky hierarchy

What about recursive languages?

Proof...
Example 8.28. A Countable Union of Countable Sets Is Countable

\[S = \bigcup_{i=0}^{\infty} S_i \]

Same construction as in Example 8.26, but...

Example 8.29. Languages Are Countable Sets

\[L \subseteq \Sigma^* = \bigcup_{i=0}^{\infty} \Sigma_i \]

Two ways to list \(\Sigma^* \)

Example 8.30. The Set of Turing Machines Is Countable

Let \(T \) be the set of Turing machines. There is an injective function \(e : T \rightarrow \{0, 1\}^* \) (the encoding function). Hence, the set of recursively enumerable languages is countable.

Example 8.31. The Set of Languages Is Uncountable (continued)

There are uncountably many languages over \(\{0, 1\} \). Hence, because \(N \) and \(\{0, 1\} \) are the same size, the set of languages is uncountable.

Example 8.31. The Set of Languages Is Uncountable (continued)

\(A = \{ i \in N \mid i \notin A_i \} \)

For every set \(A_0, A_1, A_2, \ldots \) of subsets of \(N \) that is complete, there is at least one subset of \(N \) that is not in the list.

Example 8.31. The Set of Languages Is Uncountable (continued)

\(A = \{ i \in N \mid i \notin A_i \} \).

There are uncountably many languages over \(\{0, 1\} \).

Example 8.31. The Set of Languages Is Uncountable (continued)

There are uncountably many languages over \(\{0, 1\} \).

Example 8.32. Not all languages are recursively enumerable.

\[\text{The set of languages over } \{0, 1\} \text{ that are not recursively enumerable is uncountable.} \]

Proof...

Because there are uncountably many languages over \(\{0, 1\} \), there are uncountably many Turing machines. Let \(T \) be the set of Turing machines.

Example 8.32. Not all languages are recursively enumerable. (including Exercise 8.38)