Compilerconstructie

najaar 2016

http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/

Rudy van Vliet
kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl
college 3, woensdag 21 september 2016

+ werkcollege

Syntax Analysis (1)

4 Syntax Analysis

- Every language has rules prescribing the syntactic structure of the programs:
- functions, made up of declarations and statements
- statements made up of expressions
- expressions made up of tokens
- CFG can describe (part of) syntax of programming-language constructs.
- Precise syntactic specification
- Automatic construction of parsers for certain classes of grammars
- Structure imparted to language by grammar is useful for translating source programs into object code
- New language constructs can be added easily
- Parser checks/determines syntactic structure

4.3.5 Non-CF Language Constructs

- Declaration of identifiers before their use

$$
L_{1}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}
$$

- Number of formal parameters in function declaration equals number of actual parameters in function call Function call may be specified by

$$
\begin{aligned}
\text { stmt } & \rightarrow \text { id (expr_list) } \\
\text { expr_list } & \rightarrow \text { expr_list, expr } \mid \text { expr } \\
L_{2} & =\left\{a^{n} b^{m} c^{n} d^{m} \mid m, n \geq 1\right\}
\end{aligned}
$$

Such checks are performed during semantic-analysis phase

2.4 Parsing

- Process of determining if a string of tokens can be generated by a grammar
- For any context-free grammar, there is a parser that takes at most $\mathcal{O}\left(n^{3}\right)$ time to parse a string of n tokens
- Linear algorithms sufficient for parsing programming languages
- Two methods of parsing:
- Top-down constructs parse tree from root to leaves
- Bottom-up constructs parse tree from leaves to root

Cf. top-down PDA and bottom-up PDA in FI2

4.1.1 The Role of the Parser

- Obtain string of tokens
- Verify that string can be generated by the grammar
- Report and recover from syntax errors

Parsing

Finding parse tree for given string

- Universal (any CFG)
- Cocke-Younger-Kasami
- Earley
- Top-down (CFG with restrictions)
- Predictive parsing
- LL (Left-to-right, Leftmost derivation) methods
- LL(1): LL parser, needs only one token to look ahead
- Bottom-up (CFG with restrictions)

Today: top-down parsing
Next week: bottom-up parsing

4.2 Context-Free Grammars

Context-free grammar is a 4-tuple with

- A set of nonterminals (syntactic variables)
- A set of tokens (terminal symbols)
- A designated start symbol (nonterminal)
- A set of productions: rules how to decompose nonterminals

Example: CFG for simple arithmetic expressions:

$$
G=(\{\text { expr }, \text { term, factor }\},\{\mathbf{i d},+,-, *, /,(,)\}, \text { expr }, P)
$$

with productions P :

$$
\begin{aligned}
\text { expr } & \rightarrow \text { expr }+ \text { term } \mid \text { expr }- \text { term } \mid \text { term } \\
\text { term } & \rightarrow \text { term } * \text { factor } \mid \text { term } / \text { factor } \mid \text { factor } \\
\text { factor } & \rightarrow(\text { expr }) \mid \mathbf{i d}
\end{aligned}
$$

4.2.2 Notational Conventions

1. Terminals:
a, b, c, \ldots; specific terminals: $+, *,(), 0,1,$, id, if,\ldots
2. Nonterminals:
A, B, C, \ldots; specific nonterminals: S, expr, stmt $, \ldots, E, \ldots$
3. Grammar symbols: X, Y, Z
4. Strings of terminals: u, v, w, x, y, z
5. Strings of grammar symbols: $\alpha, \beta, \gamma, \ldots$

Hence, generic production: $A \rightarrow \alpha$
6. A-productions:
$A \rightarrow \alpha_{1}, A \rightarrow \alpha_{2}, \ldots, A \rightarrow \alpha_{k} \quad \Rightarrow \quad A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{k}$
Alternatives for A
7. By default, head of first production is start symbol

Notational Conventions (Example)

CFG for simple arithmetic expressions:

$$
G=(\{\text { expr }, \text { term, factor }\},\{\mathbf{i d},+,-, *, /,(,)\}, \text { expr }, P)
$$

with productions P :

$$
\begin{aligned}
\text { expr } & \rightarrow \text { expr }+ \text { term } \mid \text { expr }- \text { term } \mid \text { term } \\
\text { term } & \rightarrow \text { term } * \text { factor } \mid \text { term } / \text { factor } \mid \text { factor } \\
\text { factor } & \rightarrow \text { (expr }) \mid \text { id }
\end{aligned}
$$

Can be rewritten concisely as:

$$
\begin{aligned}
& E \rightarrow E+T|E-T| T \\
& T \rightarrow T * F|T / F| F \\
& F \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

4.2.3 Derivations

Example grammar:

$$
E \rightarrow E+E|E * E| \begin{array}{ll}
-E & (E) \mid \text { id }
\end{array}
$$

- In each step, a nonterminal is replaced by body of one of its productions, e.g.,

$$
E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(\mathbf{i d})
$$

- One-step derivation: $\alpha A \beta \Rightarrow \alpha \gamma \beta$, where $A \rightarrow \gamma$ is production in grammar
- Derivation in zero or more steps: $\stackrel{*}{\Rightarrow}$
- Derivation in one or more steps: $\stackrel{+}{\Rightarrow}$

Derivations

- If $S \stackrel{*}{\Rightarrow} \alpha$, then α is sentential form of G
- If $S \stackrel{*}{\Rightarrow} \alpha$ and α has no nonterminals, then α is sentence of G
- Language generated by G is $L(G)=\{w \mid w$ is sentence of $G\}$
- Leftmost derivation: $w A \gamma \underset{l m}{\Rightarrow} w \delta \gamma$
- If $S \underset{l m}{\stackrel{*}{\Rightarrow}} \alpha$, then α is left sentential form of G
- Rightmost derivation: $\gamma A w \underset{\overrightarrow{r m}}{\Rightarrow} \gamma \delta w, \stackrel{*}{\overrightarrow{r m}}$

Example of leftmost derivation:

$$
E \underset{l m}{\Rightarrow}-E \underset{l m}{\Rightarrow}-(E) \underset{l m}{\Rightarrow}-(E+E) \underset{l m}{\Rightarrow}-(\mathbf{i d}+E) \underset{l m}{\Rightarrow}-(\mathbf{i d}+\mathbf{i d})
$$

Parse Tree

(from lecture 1)
(derivation tree in FI2)

- The root of the tree is labelled by the start symbol
- Each leaf of the tree is labelled by a terminal (=token) or ϵ (=empty)
- Each interior node is labelled by a nonterminal
- If node A has children $X_{1}, X_{2}, \ldots, X_{n}$, then there must be a production $A \rightarrow X_{1} X_{2} \ldots X_{n}$

Yield of the parse tree: the sequence of leafs (left to right)

4.2.4 Parse Trees and Derivations

$$
\begin{gathered}
E \rightarrow E+E|E * E| \begin{array}{c}
\\
E \rightarrow \\
\hline l m \\
\Rightarrow
\end{array}-E \underset{l m}{\Rightarrow}-(E) \underset{l m}{\Rightarrow}-(E+E) \underset{l m}{\Rightarrow}-(\mathbf{i d}+E) \underset{l m}{\Rightarrow}-(\mathbf{i d}+\mathbf{i d})
\end{gathered}
$$

(E)

Many-to-one relationship between derivations and parse trees. . .

4.2.5 Ambiguity

More than one leftmost/rightmost derivation for same sentence
Example:

$$
a+b * c
$$

4.3.2 Eliminating ambiguity

- Sometimes ambiguity can be eliminated
- Example: "dangling-else"-grammar

$$
\begin{aligned}
& \text { stmt } \rightarrow \text { if expr then stmt } \\
& \mid \text { if expr then stmt else stmt } \\
& \mid \text { other }
\end{aligned}
$$

Here, other is any other statement
if E_{1} then if E_{2} then S_{1} else S_{2}

Eliminating ambiguity

Example: ambiguous "dangling-else"-grammar

$$
\begin{aligned}
\text { stmt } \rightarrow & \text { if expr then } \operatorname{stmt} \\
\mid & \text { if expr then stmt else stmt } \\
\mid & \text { other }
\end{aligned}
$$

Only matched statements between then and else...

Eliminating ambiguity

Example: ambiguous "dangling-else"-grammar

$$
\begin{aligned}
& \text { stmt } \rightarrow \text { if expr then stmt } \\
& \mid \text { if expr then stmt else stmt } \\
& \mid \text { other }
\end{aligned}
$$

Equivalent unambiguous grammar

2.4.1 Top-Down Parsing (Example)

| stmt \rightarrow | expr ; |
| ---: | :--- | :--- |
| | \mid if (expr) stmt |
| | for (optexpr ; optexpr ; optexpr) stmt |
| | \mid other |
| optexpr \rightarrow | ϵ |
| | \mid expr |

How to determine parse tree for
for (; expr ; expr)other

Use lookahead: current terminal in input. . .

2.4.2 Predictive Parsing

- Recursive-descent parsing is a top-down parsing method:
- Executes a set of recursive procedures to process the input
- Every nonterminal has one (recursive) procedure parsing the nonterminal's syntactic category of input tokens
- Predictive parsing ...

4.4.1 Recursive Descent Parsing

Recursive procedure for each nonterminal

void $A()$

1) $\left\{\right.$ Choose an A-production, $A \rightarrow X_{1} X_{2} \ldots X_{k}$;
2) for $(i=1$ to $k)$
3) $\left\{\right.$ if (X_{i} is nonterminal)
4) call procedure $X_{i}()$;
5) else if (X_{i} equals current input symbol a)
6) advance input to next symbol;
7) else /* an error has occurred */;
```
    }
}
```

Pseudocode is nondeterministic

Recursive-Descent Parsing

- One may use backtracking:
- Try each A-production in some order
- In case of failure at line 7 (or call in line 4), return to line 1 and try another A-production
- Input pointer must then be reset, so store initial value input pointer in local variable
- Example in book
- Backtracking is rarely needed: predictive parsing

2.4.2 Predictive Parsing

- Recursive-descent parsing ...
- Predictive parsing is a special form of recursive-descent parsing:
- The lookahead symbol(s) unambiguously determine(s) the production for each nonterminal

Simple example:

```
stmt -> expr ;
        if (expr) stmt
        for (optexpr ; optexpr ; optexpr) stmt
        other
```


Predictive Parsing (Example)

```
void stmt()
{ switch (lookahead)
    { case expr:
                            match(expr); match(';'); break;
        case if:
                    match(if); match('('); match(expr); match(')'); stmt();
                    break;
        case for:
            match(for); match('(');
            optexpr(); match(';'); optexpr(); match(';'); optexpr();
            match(')'); stmt(); break;
        case other;
                        match(other); break;
        default:
            report("syntax error");
    }
}
void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;
    else report("syntax error");
}
```


Using FIRST (simple case)

- Let α be string of grammar symbols
- FIRST $(\alpha)=$ set of terminals/tokens that appear as first symbols of strings derived from α

Simple example:

```
stmt -> expr;
    | if (expr) stmt
    | for (optexpr ;optexpr ; optexpr) stmt other
```

Right-hand side may start with nonterminal. . .

Using FIRST (simple case)

- Let α be string of grammar symbols
- $\operatorname{FIRST}(\alpha)=$ set of terminals/tokens that appear as first symbols of strings derived from α
- When a nonterminal has multiple productions, e.g.,

$$
A \rightarrow \alpha \mid \beta
$$

then $\operatorname{FIRST}(\alpha)$ and $\operatorname{FIRST}(\beta)$ must be disjoint in order for predictive parsing to work

2.4.3 When to Use ϵ-Productions (simple solution)

Simple example:

stmt	\rightarrow expr ;
	\mid if (expr)stmt
	\mid for (optexpr ; optexpr ; optexpr) stmt
	\mid other
optexpr	\rightarrow expr
	$\mid \epsilon$

Predictive Parsing (Example)

```
void stmt()
{ switch (lookahead)
    { case expr: ...
        case if: ...
        case for:
                        match(for); match('(');
                        optexpr(); match(';'); optexpr(); match(',''); optexpr();
                    match(')'); stmt(); break;
        case other; ...
        default: ...
    }
}
void optexpr()
{ if (lookahead==expr)
        match (expr);
}
void match(terminal t)
{ if (lookahead==t) lookahead = nextTerminal;
    else report("syntax error");
}
```


2.4.5 Left Recursion

- Productions of the form $A \rightarrow A \alpha \mid \beta$ are left-recursive - β does not start with A
- Example:

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow \mathbf{i d}
\end{aligned}
$$

- $\operatorname{FIRST}(E+T) \cap \operatorname{FIRST}(T)=\{\mathbf{i d}\} \neq \emptyset$
- Top-down parser may loop forever if grammar has left-recursive productions
- Left-recursive productions can be eliminated by rewriting productions

4.3.3 Elimination of Left Recursion

Immediate left recursion

- Productions of the form $A \rightarrow A \alpha \mid \beta$
- Can be eliminated by replacing the productions by

$$
\begin{array}{ll}
A \rightarrow \beta A^{\prime} & \left(A^{\prime}\right. \text { is new nonterminal) } \\
A^{\prime} \rightarrow \alpha A^{\prime} \mid \epsilon & \left(A^{\prime} \rightarrow \alpha A^{\prime} \text { is right recursive }\right)
\end{array}
$$

- Procedure:

1. Group A-productions as

$$
A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| \ldots\left|A \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}
$$

2. Replace A-productions by

$$
\begin{aligned}
A & \rightarrow \beta_{1} A^{\prime}\left|\beta_{2} A^{\prime}\right| \ldots \mid \beta_{n} A^{\prime} \\
A^{\prime} & \rightarrow \alpha_{1} A^{\prime}\left|\alpha_{2} A^{\prime}\right| \ldots\left|\alpha_{m} A^{\prime}\right| \epsilon
\end{aligned}
$$

Elimination of Left Recursion

Immediate left recursion

- Productions of the form $A \rightarrow A \alpha \mid \beta$
- Can be eliminated by replacing the productions by

$$
\begin{array}{ll}
A \rightarrow \beta A^{\prime} & \left(A^{\prime} \text { is new nonterminal }\right) \\
A^{\prime} \rightarrow \alpha A^{\prime} \mid \epsilon & \left(A^{\prime} \rightarrow \alpha A^{\prime} \text { is right recursive }\right)
\end{array}
$$

Example:

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow \mathbf{i d}
\end{aligned}
$$

- New grammar...
- Derivation trees for $\mathbf{i d}_{1}+\mathbf{i d}_{2}+\mathbf{i d}_{3}+\mathbf{i d}_{4} \ldots$

Elimination of Left Recursion

General left recursion

- Left recursion involving two or more steps

$$
\begin{aligned}
& S \rightarrow B a \mid b \\
& B \rightarrow A A \mid a \\
& A \rightarrow A c \mid S d
\end{aligned}
$$

- S is left-recursive because

$$
S \Rightarrow B a \Rightarrow A A a \Rightarrow S d A a \quad \text { (not immediately left-recursive) }
$$

Elimination of General Left Recursion

$$
\begin{aligned}
& S \rightarrow B a \mid b \\
& B \rightarrow A A \mid a \\
& A \rightarrow A c \mid S d
\end{aligned}
$$

- We order nonterminals: $S, B, A(n=3)$
- Variables may only 'point forward'
- $i=1$ and $i=2$: nothing to do
- $i=3$:
- substitute $A \rightarrow S d$
- substitute $A \rightarrow B a d$
- eliminate immediate left-recursion in A-productions

Elimination of General Left Recursion

Algorithm for G with no cycles or ϵ-productions

1) arrange nonterminals in some order $A_{1}, A_{2}, \ldots, A_{n}$
2) for $(i=1$ to $n)$
3) $\{$ for $(j=1$ to $i-1)$
4) $\left\{\right.$ replace each production of form $A_{i} \rightarrow A_{j} \gamma$ by the productions $A_{i} \rightarrow \delta_{1} \gamma\left|\delta_{2} \gamma\right| \ldots \mid \delta_{k} \gamma$, where $A_{j} \rightarrow \delta_{1}\left|\delta_{2}\right| \ldots \mid \delta_{k}$ are all current A_{j}-productions
5) $\}$
6) eliminate immediate left recursion among A_{i}-productions 7) \}

Example with $A \rightarrow \epsilon$ (well/wrong.......)

4.3.4 Left Factoring

Another transformation to produce grammar suitable for predictive parsing

- If $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$ and input begins with nonempty string derived from α
How to expand A ? To $\alpha \beta_{1}$ or to $\alpha \beta_{2}$?

4.3.4 Left Factoring

Another transformation to produce grammar suitable for predictive parsing

- If $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$ and input begins with nonempty string derived from α
How to expand A ? To $\alpha \beta_{1}$ or to $\alpha \beta_{2}$?
- Solution: left-factoring Replace two A-productions by

$$
\begin{aligned}
A & \rightarrow \alpha A^{\prime} \\
A^{\prime} & \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

- $|\alpha|$ may be ≥ 2

Left Factoring (Example)

- Which production to choose when input token is if?

stmt	\rightarrow if expr then stmt
	$\|$if expr then stmt else stmt expr other

- Or abstract:

$$
\begin{aligned}
& S \rightarrow i E t S|i E t S e S| a \\
& E \rightarrow b
\end{aligned}
$$

- Left-factored: . . .

Left Factoring (Example)

- Which production to choose when input token is if? Abstract:

$$
\begin{aligned}
S & \rightarrow i E t S|i E t S e S| a \\
E & \rightarrow b
\end{aligned}
$$

- Left-factored:

$$
\begin{aligned}
S & \rightarrow i E t S S^{\prime} \mid a \\
S^{\prime} & \rightarrow \epsilon \mid e S \\
E & \rightarrow b
\end{aligned}
$$

Of course, still ambiguous. . .

Left Factoring (Example)

What is result of left factoring for

$$
S \rightarrow a b S|a b c A| a a a|a a b| a A
$$

4.4 Top-Down Parsing

- Construct parse tree,
- starting from the root
- creating nodes in preorder

Corresponds to finding leftmost derivation

Top-Down Parsing (Example)

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

- Non-left-recursive variant: ...

Top-Down Parsing (Example)

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

- Non-left-recursive variant:

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

- Top-down parse for input id + id $* \mathbf{i d}$...
- At each step: determine production to be applied

Top-Down Parsing

- Recursive-descent parsing
- Predictive parsing
- Eliminate left-recursion from grammar
- Left-factor the grammar
- Compute FIRST and FOLLOW
- Two variants:
* Recursive (recursive calls)
* Non-recursive (explicit stack)

4.4.2 FIRST (and Follow)

- Let α be string of grammar symbols
- FIRST $(\alpha)=$ set of terminals/tokens that appear as first symbols of strings derived from α
- If $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then $\epsilon \in \operatorname{FIRST}(\alpha)$
- Example

$$
F \rightarrow(E) \mid \mathbf{i d}
$$

$\operatorname{FIRST}\left(F T^{\prime}\right)=\{(, \mathbf{i d}\}$

- When nonterminal has multiple productions, e.g.,

$$
A \rightarrow \alpha \mid \beta
$$

and $\operatorname{FIRST}(\alpha)$ and $\operatorname{FIRST}(\beta)$ are disjoint, we can choose between these A-productions by looking at next input symbol

Computing FIRST

Compute FIRST (X) for all grammar symbols X :

- If X is terminal, then FIRST $(X)=\{X\}$
- If $X \rightarrow \epsilon$ is production, then add ϵ to $\operatorname{FIRST}(X)$
- Repeat adding symbols to FIRST(X) by looking at productions

$$
X \rightarrow Y_{1} Y_{2} \ldots Y_{k}
$$

(see book) until all FIRST sets are stable

FIRST (Example)

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \text { id }
\end{aligned}
$$

nonterminal A	FIRST (A)
E	\cdots
E^{\prime}	\ldots
T	\cdots
T^{\prime}	\cdots
F	\ldots

Fill in bottom-up...

FIRST (Example)

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \text { id }
\end{aligned}
$$

nonterminal A	FIRST (A)
E	$\{(, \mathbf{i d}\}$
E^{\prime}	$\{+, \epsilon\}$
T	$\{(, \mathbf{i d d}\}$
T^{\prime}	$\{*, \epsilon\}$
F	$\{(, \mathbf{i d}\}$

4.4.2 (First and) FOLLOW

- Let A be nonterminal
- $\operatorname{FOLLOW}(A)=$ set of terminals/tokens that can appear immediately to the right of A in sentential form:

$$
\operatorname{FOLLOW}(A)=\{a \mid S \stackrel{*}{\Rightarrow} \alpha A a \beta\}
$$

- Example

$$
F \rightarrow(E) \mid \mathbf{i d}
$$

Computing FOLLOW

Compute $\operatorname{FOLLOW}(A)$ for all nonterminals A :

- Place \$ in FOLLOW(S)
- For production $A \rightarrow \alpha B \beta$, add everything in $\operatorname{FIRST}(\beta)$ to $\operatorname{FOLLOW}(B) \quad$ (except ϵ)
- - For production $A \rightarrow \alpha B$, add everything in $\operatorname{FOLLOW}(A)$ to $\operatorname{FOLLOW}(B)$
- For production $A \rightarrow \alpha B \beta$ with $\epsilon \in \operatorname{FIRST}(\beta)$, add everything in $\operatorname{FOLLOW}(A)$ to $\operatorname{FOLLOW}(B)$
until all FOLLOW sets are stable

FIRST and FOLLOW (Example)

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

nonterminal A	FIRST (A)	FOLLOW (A)
E	$\{(, \mathbf{i d}\}$	\ldots
E^{\prime}	$\{+, \epsilon\}$	\ldots
T	$\{(, \mathbf{i d}\}$	\ldots
T^{\prime}	$\{*, \epsilon\}$	\ldots
F	$\{(, \mathbf{i d}\}$	\ldots

Fill in top-down...

FIRST and FOLLOW (Example)

$\left.\begin{array}{rl}E & \rightarrow T E^{\prime} \\ E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\ T & \rightarrow F T^{\prime} \\ T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\ F & \rightarrow(E) \mid \text { id } \\ \hline \text { nonterminal } A & \text { FIRST }(A) \\ \hline E & \{(, \mathbf{i d}\} \\ \hline E^{\prime} & \{+, \epsilon\} \\ T & \{(, \mathbf{i d}\} \\ T^{\prime} & \{*, \epsilon\} \\ F & \{(, \mathbf{i d}\}\end{array}\right]\left\{\begin{array}{l}\{+, \$\}, \$\} \\ \hline\end{array}\right.$

4.4.3 LL(1) Grammars

When next input symbol is a (terminal or input endmarker \$), we may choose $A \rightarrow \alpha$

- if $a \in \operatorname{FIRST}(\alpha)$
- if $(\alpha=\epsilon$ or $\alpha \stackrel{*}{\Rightarrow} \epsilon)$ and $a \in \operatorname{FOLLOW}(A)$

Algorithm to construct parsing table $M[A, a]$

```
for (each production A->\alpha)
{ for (each a FIRST(\alpha))
            add }A->\alpha\mathrm{ to }M[A,a]
    if ( }\epsilon\in\mathrm{ FIRST ( }\alpha)\mathrm{ )
    { for (each a\inFOLLOW(A))
            add }A->\alpha\mathrm{ to }M[A,a]
    }
}
If M[A,a] is empty, set M[A,a] to error.
```


Top-Down Parsing Table (Example)

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \text { id }
\end{aligned}
$$

nonterminal A	FIRST (A)	FOLLOW (A)
E	$\{(, \mathbf{i d}\}$	$), \$\}$
E^{\prime}	$\{+, \epsilon\}$	$), \$\}$
T	$\{(, \mathbf{i d}\}$	$\{+),, \$\}$
T^{\prime}	$\{*, \epsilon\}$	$\{+),, \$\}$
F	$\{(, \mathbf{i d}\}$	$\{*,+),, \$\}$

Non-	Input Symbol					
terminal	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$	$E^{\prime} \rightarrow+T E^{\prime}$		$E \rightarrow T E^{\prime}$		
E^{\prime}						
T	$T \rightarrow F T^{\prime}$	$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$			
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$			$T^{\prime} \rightarrow \epsilon$
F	$F \rightarrow \mathbf{i d}$			$T^{\prime} \rightarrow \epsilon$		

LL(1) Grammars

- LL(1)

Left-to-right scanning of input, Leftmost derivation, 1 token to look ahead suffices for predictive parsing

- Grammar G is LL(1),
if and only if for two distinct productions $A \rightarrow \alpha \mid \beta$,
$-\alpha$ and β do not both derive strings beginning with same terminal a
- at most one of α and β can derive ϵ
- if $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive strings beginning with terminal $a \in \operatorname{FOLLOW}(A)$
- In other words, . . .
- Grammar G is $L L(1)$, if and only if parsing table uniquely identifies production or signals error

LL(1) Grammars (Example)

- Not LL(1):

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T * F \mid F \\
& F \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

- Non-left-recursive variant, LL(1):

$$
\begin{aligned}
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \mid \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \mid \epsilon \\
F & \rightarrow(E) \mid \mathbf{i d}
\end{aligned}
$$

Left Factoring (Example)

- Abstract if-then-else-grammar:

$$
\begin{aligned}
& S \rightarrow i E t S|i E t S e S| a \\
& E \rightarrow b
\end{aligned}
$$

- Left-factored:

$$
\begin{aligned}
S & \rightarrow i E t S S^{\prime} \mid a \\
S^{\prime} & \rightarrow \epsilon \mid e S \\
E & \rightarrow b
\end{aligned}
$$

Not LL(1)...

4.4.4 Nonrecursive Predictive Parsing

Cf. top-down PDA from FI2

Nonrecursive Predictive Parsing

```
push $ onto stack;
push S onto stack;
let a be first symbol of input w;
let X be top stack symbol;
while ( }X\not=$)/* stack is not empty */
{ if (X=a)
    { pop stack;
        let a be next symbol of w;
    }
    else if (X is terminal)
                error();
                else if (M[X,a] is error entry)
                error();
                else if (M[X,a] = X 
                            { output production X }X\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{}\ldots\mp@subsup{Y}{k}{}
                pop stack;
                push }\mp@subsup{Y}{k}{},\mp@subsup{Y}{k-1}{},\ldots,\mp@subsup{Y}{1}{}\mathrm{ onto stack, with }\mp@subsup{Y}{1}{}\mathrm{ on top;
                }
    let X be top stack symbol;
```

\}

Nonrec. Predictive Parsing (Example)

Non-	Input Symbol					
terminal	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$		$E^{\prime} \rightarrow+T E^{\prime}$		$E \rightarrow T E^{\prime}$	
E^{\prime}						
T	$T \rightarrow F T^{\prime}$	$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$			
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$	$T \rightarrow F T^{\prime}$	$E^{\prime} \rightarrow \epsilon$	
F	$F \rightarrow \mathbf{i d}$					

Matched	Stack	Input	Action
	$E \$$	id $+\mathbf{i d} * \mathbf{i d} \$$	\ldots
\ldots	\ldots	\ldots	\ldots

Nonrec. Predictive Parsing (Example)

Non-	Input Symbol					
terminal	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$		$E^{\prime} \rightarrow+T E^{\prime}$		$E \rightarrow T E^{\prime}$	
E^{\prime}						
T	$T \rightarrow F T^{\prime}$	$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$			
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$	$T \rightarrow F T^{\prime}$	$E^{\prime} \rightarrow \epsilon$	
F	$F \rightarrow \mathbf{i d}$					

Matched	Stack	Input	Action
	$E \$$	id + id $* \mathbf{i d} \$$	output $E \rightarrow T E^{\prime}$
	$T E^{\prime} \$$	id + id $* \mathbf{i d} \$$	output $T \rightarrow F T^{\prime}$
	$F T^{\prime} E^{\prime} \$$	id + id $* \mathbf{i d} \$$	output $F \rightarrow \mathbf{i d}$
	$\mathbf{i d} T^{\prime} E^{\prime} \$$	id + id $* \mathbf{i d} \$$	match id
$\mathbf{i d}$	$T^{\prime} E^{\prime} \$$	$+\mathbf{i d} * \mathbf{i d} \$$	output $T^{\prime} \rightarrow \epsilon$
id	$E^{\prime} \$$	$+\mathbf{i d} * \mathbf{i d} \$$	output $E^{\prime} \rightarrow+T E^{\prime}$
$\mathbf{i d}$	$+T E^{\prime} \$$	$+\mathbf{i d} * \mathbf{i d} \$$	match +
$\mathbf{i d +}$	$T E^{\prime} \$$	$\mathbf{i d} * \mathbf{i d} \$$	output $T \rightarrow F T^{\prime}$
\ldots	\ldots	\ldots	\ldots

Note shift up of last column

4.1.3 Syntax Error Handling

- Good compiler should assist in identifying and locating errors
- Lexical errors: compiler can easily detect and continue
- Syntax errors: compiler can detect and often recover
- Semantic errors: compiler can sometimes detect
- Logical errors: hard to detect
- Three goals. The error handler should
- Report errors clearly and accurately
- Recover quickly to detect subsequent errors
- Add minimal overhead to processing of correct programs

Error Detection and Reporting

- Viable-prefix property of LL/LR parsers allow detection of syntax errors as soon as possible,
i.e., as soon as prefix of input does not match prefix of any string in language (valid program)
- Reporting an error:
- At least report line number and position
- Print diagnostic message, e.g.,
"semicolon missing at this position"

Error-Recovery Strategies

- Continue after error detection, restore to state where processing may continue, but...
- No universally acceptable strategy, but some useful strategies:
- Panic-mode recovery: discard input until token in designated set of synchronizing tokens is found
- Phrase-level recovery: perform local correction on the input to repair error, e.g., insert missing semicolon Has actually been used
- Error productions: augment grammar with productions for erroneous constructs
- Global correction: choose minimal sequence of changes to obtain correct string
Costly, but yardstick for evaluating other strategies

4.4.5 Error Recovery in Pred. Parsing

Panic-mode recovery

- Discard input until token in set of designated synchronizing tokens is found
- Heuristics
- Put all symbols in FOLLOW(A) into synchronizing set for A (and remove A from stack)
- Add symbols based on hierarchical structure of language constructs
- Add symbols in FIRST (A)
- If $A \stackrel{*}{\Rightarrow} \epsilon$, use production deriving ϵ as default
- Add tokens to synchronizing sets of all other tokens

Adding Synchronizing Tokens

nonterminal A	FIRST (A)	FOLLOW (A)
E	$\{(, \mathbf{i d}\}$	$), \$\}$
E^{\prime}	$\{+, \epsilon\}$	$), \$\}$
T	$\{(, \mathbf{i d}\}$	$\{+),, \$\}$
T^{\prime}	$\{*, \epsilon\}$	$\{+),, \$\}$
F	$\{(, \mathbf{i d}\}$	$\{*,+),, \$\}$

Non-	Input Symbol					
terminal	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$			$E \rightarrow T E^{\prime}$	synch	synch
E^{\prime}		$E^{\prime} \rightarrow+T E^{\prime}$			$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$
T	$T \rightarrow F T^{\prime}$	synch		$T \rightarrow F T^{\prime}$	synch	synch
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow \epsilon$
F	$F \rightarrow \mathbf{i d}$	synch	synch	$F \rightarrow(E)$	synch	synch

Adding Synchronizing Tokens

Non-	Input Symbol					
terminal	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$			$E \rightarrow T E^{\prime}$	synch	synch
E^{\prime}		$E^{\prime} \rightarrow+T E^{\prime}$			$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$
T	$T \rightarrow F T^{\prime}$	synch		$T \rightarrow F T^{\prime}$	synch	synch
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow \epsilon$
F	$F \rightarrow \mathbf{i d}$	synch	synch	$F \rightarrow(E)$	synch	synch

Parsing () + (id ($* \mathbf{i d}$:

Matched	Stack	Input	Action
	$E \$$	()$+($ id $(* \mathbf{i d} \$$	\ldots
\ldots	\ldots	\ldots	\ldots

Adding Synchronizing Tokens

Parsing () + (id ($*$ id :

Matched	Stack	Input	Action
	E\$	() + (id (*id\$	(\in FIRST $\left(T E^{\prime}\right)$, output $E \rightarrow T E^{\prime}$
	(E) $T^{\prime} E^{\prime} \$$	() + (id (*id\$	match (
(E) $T^{\prime} E^{\prime}$ \$) + (id (*id\$	error, synch
(\underline{E}	$) T^{\prime} E^{\prime} \$$	$)+(i d(* i d \$$	match)
$(\underline{E})+($	id $\left.T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$$	id (*id\$	match id
$(\underline{E})+(\mathrm{id}$	$\left.T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime}$ \$	(*id\$	error, skip (
$(\underline{E})+(\mathrm{id}$	$\left.T^{\prime} E^{\prime}\right) T^{\prime} E^{\prime} \$$	*id\$	$* \in \operatorname{FIRST}\left(* F T^{\prime}\right)$, output $T^{\prime} \rightarrow * F T^{\prime}$
$(\underline{E})+(\mathbf{i d} * \mathbf{i d}$	$\left.E^{\prime}\right) T^{\prime} E^{\prime}$ \$	\$	$\$ \in \operatorname{FOLLOW}\left(E^{\prime}\right)$, output $E^{\prime} \rightarrow \epsilon$
$(\underline{E})+(\mathrm{id} * \mathbf{i d}$	$) T^{\prime} E^{\prime} \$$	\$	error, pop)
$(\underline{E})+(\mathbf{i d} * \mathbf{i d})$	$T^{\prime} E^{\prime}$ \$	\$	\$ \in FOLLOW $\left(T^{\prime}\right)$, output $T^{\prime} \rightarrow \epsilon$
$(\underline{E})+(\mathbf{i d} * \mathbf{i d})$	E^{\prime} \$	\$	\$ $\in \operatorname{FOLLOW}\left(E^{\prime}\right)$, output $E^{\prime} \rightarrow \epsilon$
$(\underline{E})+(\mathbf{i d} * \mathbf{i d})$	\$	\$	

Underlined nonterminal in column 'Matched' indicates that it has been popped from stack by synch-action Underlined terminal indicates that it has been inserted into input

Error Recovery in Predictive Parsing

Phrase-level recovery

- Local correction on remaining input that allows parser to continue
- Pointer to error routines in blank table entries
- Change symbols
- Insert symbols
- Delete symbols
- Print appropriate message
- Make sure that we do not enter infinite loop

Predictive Parsing Issues

- What to do in case of multiply-defined entries?
- Transform grammar
* Left-recursion elimination
* Left factoring
- Not always applicable
- Designing grammar suitable for top-down parsing is hard
- Left-recursion elimination and left factoring make grammar hard to read and to use in translation

Therefore: try to use LR parser generators

Compilerconstructie

college 3
Syntax Analysis (1)
Chapters for reading: 2.4, 4.1-4.4

Next week: also werkcollege

