Compilerconstructie

najaar 2015

http://www.liacs.leidenuniv.nl/~vlietrvan1/coco/

Rudy van Vliet

kamer 124 Snellius, tel. 071-527 5777 rvvliet(at)liacs(dot)nl

college 10, woensdag 2 december 2015 + 'werkcollege'

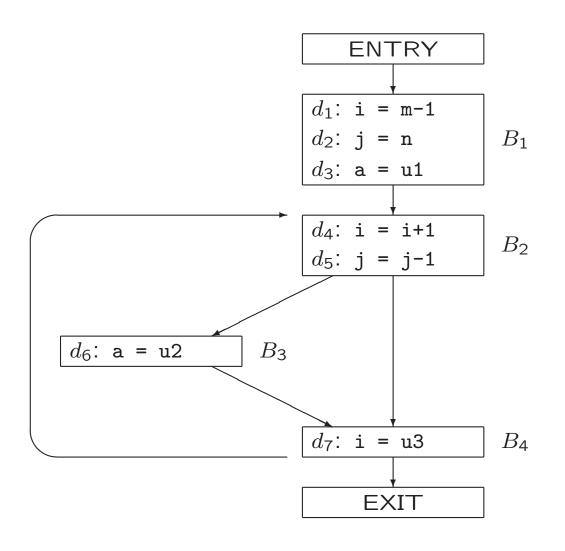
Code Optimization (2)

9.2 Introduction to Data-Flow Analysis

- Optimizations depend on data-flow analysis, e.g.,
 - Global common subexpression elimination
 - Dead-code elimination
- Execution path yields program state at program point
- Extract information from program state for data-flow analysis
- Usually infinite number of execution paths / program states
- Different analyses extract different information

Data-Flow Analysis (Examples)

- Reaching definitions: which definitions (assignments of values) of variable x may reach program point?
 - Useful for debugging:May variable x be undefined?
 - Useful for constant folding: Can variable \boldsymbol{x} only have one constant value at program point?



Reaching definitions

- Before B_1 : \emptyset
- After B_1 : $\{d_1, d_2, d_3\}$
- Before B_2 : ...

9.2.2 The Data Flow Analysis Schema

Data flow values

- IN[s]: before statement s
- OUT[s]: after statement s
- ullet Transfer function f_s
 - forward: $OUT[s] = f_s(IN[s])$
 - backward: $IN[s] = f_s(OUT[s])$

- Effect of single definition d: u = v op w:
 - $\mathsf{OUT}[d] = \{d\} \cup (\mathsf{IN}[d] \ldots)$

Effect of single definition $d: u = v \ op \ w$:

- $OUT[d] = \{d\} \cup (IN[d] \{all other definitions of u in program\})$
- Hence,

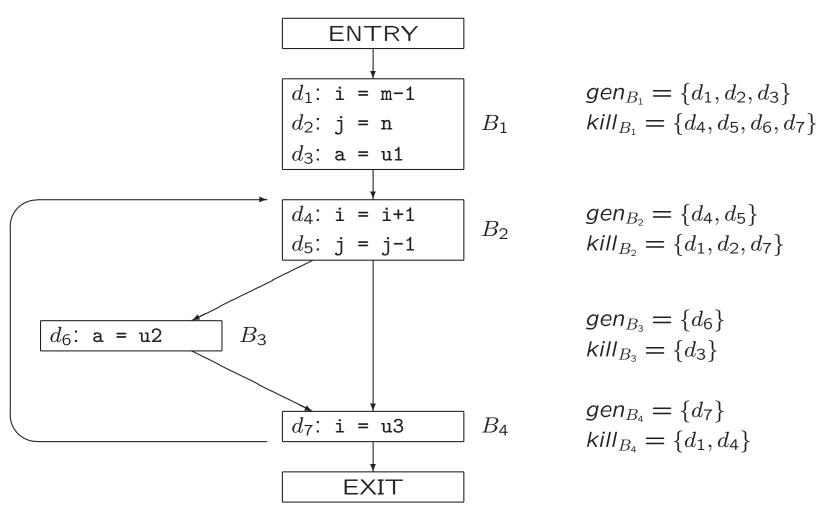
```
f_d(x) = \{d\} \cup (x - \{\text{all other definitions of } u \text{ in program}\})
= gen_d \cup (x - kill_d)
```

where

```
gen_d = \{d\}
kill_d = \{all other definitions of <math>u in program\}
```

Effect of block B, with definitions $1, 2, \ldots, n$:

```
gen_B = \{n, n-1, \ldots, 1\} - \{ \text{ definitions killed afterwards } \}
= gen_n \cup (gen_{n-1} - kill_n) \cup (gen_{n-2} - kill_{n-1} - kill_n) \ldots
kill_B = kill_1 \cup kill_2 \cup \ldots \cup kill_n
```



Iterative Algorithm for Computing Reaching Definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY

OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)

\}
```

Typical form of algorithm for forward data-flow analysis

∪ is meet operator

Example with $B = B_1, B_2, B_3, B_4, \text{EXIT.}$...

Implementation of Iterative Algorithm for Computing Reaching Definitions

With bit vectors

Block B	$\mid OUT[B]^0 \mid$	$ IN[B]^1$	$OUT[B]^1$	$IN[B]^2$	$OUT[B]^2$
	000 0000		l		l .
B_2	000 0000	111 0000	001 1100	111 0111	001 1110
B_3	000 0000	001 1100	000 1110	001 1110	000 1110
B_4	000 0000	001 1110	001 0111	001 1110	001 0111
EXIT	000 0000	000 0000	001 0111	001 0111	001 0111

9.2.5 Live-Variable Analysis

Variable x is live at program point p,
 if value of x at p could be used later along some path

Otherwise x is dead at p

• Information useful for register allocation (see lecture 7)

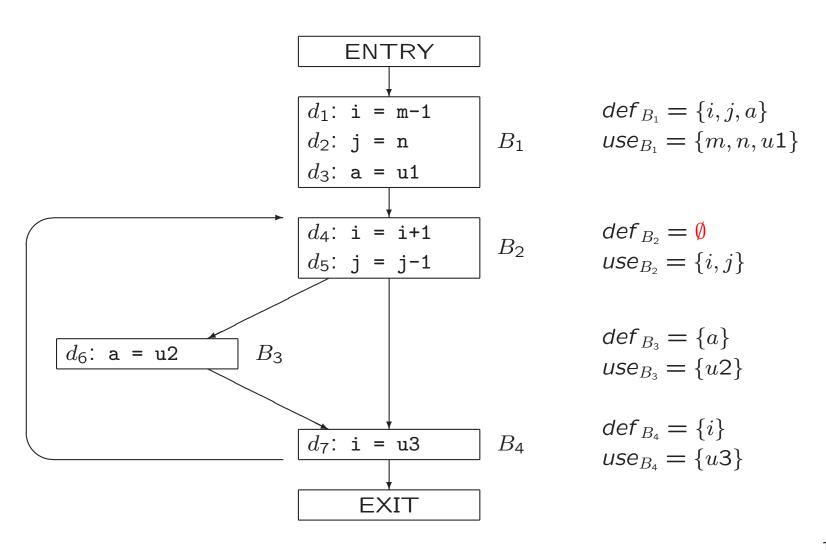
Information about later use must be propagated backwards

Live-Variable Analysis

Effect of block B on live variables

- use_B : variables that may be used in B prior to any definition in B $(\approx gen)$
- def_B : variables defined in B prior to any use of that variable in B $(\approx kill)$

Computing Live Variables



Iterative Algorithm to Compute Live Variables

```
IN[EXIT] = \emptyset

for each basic block B other than EXIT
IN[B] = \emptyset

while (changes to any IN occur)

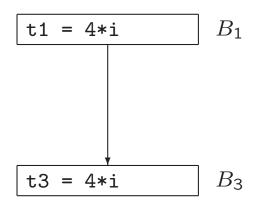
for each basic block B other than EXIT
\{ OUT[B] = \cup_{Successors \ S \ of \ B}IN[S] \}

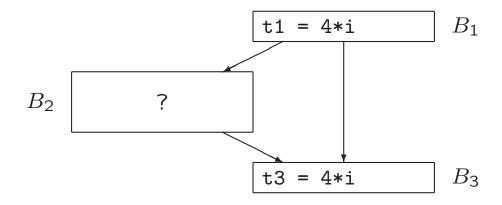
IN[B] = use_B \cup (OUT[B] - def_B)
\}
```

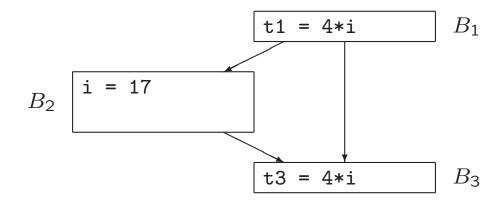
Typical form of algorithm for backward data-flow analysis

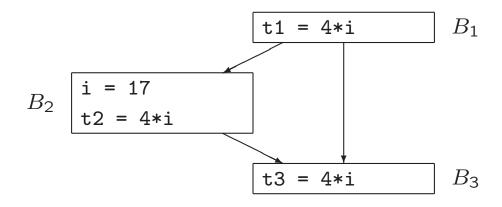
9.2.6 Available expressions

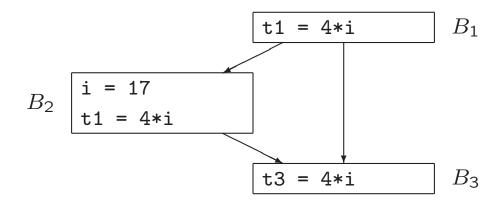
- Is (value of) expression x op y available?
- Useful for global common subexpression elimination
- Can be decided with data-flow analysis











Computing Available Expressions

Effect of block B on available expressions

e_gen_B:

expressions y op z that are computed in B, and for which y and z are not subsequently redefined

• *e_kill*_{*B*}:

expressions y op z for which y and/or z are defined in B, and that are not subsequently recomputed

Computing e_gen_B (Example)

$$S = \emptyset$$

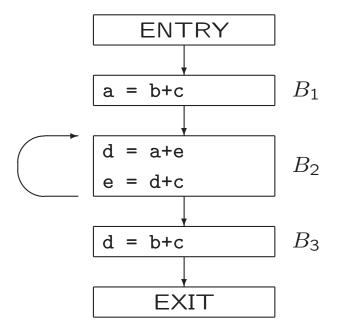
For each statement x = y op z in block B (forwards)

- ullet add y op z to S
- ullet delete from S any expression involving x

Statement	Available Expressions S		
	Ø		
a = b + c			
	$\{b+c\}$		
b = a - d			
	$\{a-d\}$		
c = b + c			
	$\{a-d\}$		
d = a - d			
	\emptyset		

Computing Available Expressions

```
\begin{split} & \text{OUT[ENTRY]} = \emptyset \\ & \text{for each basic block } B \text{ other than ENTRY} \\ & \text{OUT}[B] = U \end{split} \\ & \text{while (changes to any OUT occur)} \\ & \text{for each basic block } B \text{ other than ENTRY} \\ & \{ & \text{IN}[B] = \cap_{\text{predecessors } P \text{ of } B} \text{OUT}[P] \\ & \text{OUT}[B] = e_{-}gen_{B} \cup (\text{IN}[B] - e_{-}kill_{B}) \\ & \} \end{split} \\ & \text{Why } U \dots \end{split}
```



Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY

OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

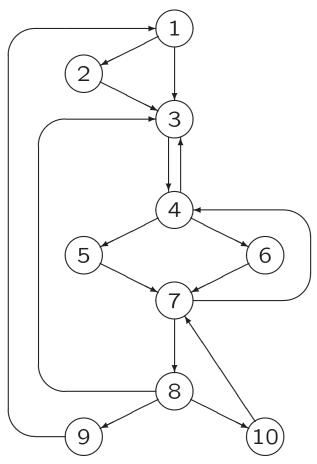
\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)

\}
```

Order of blocks in second for-loop matters

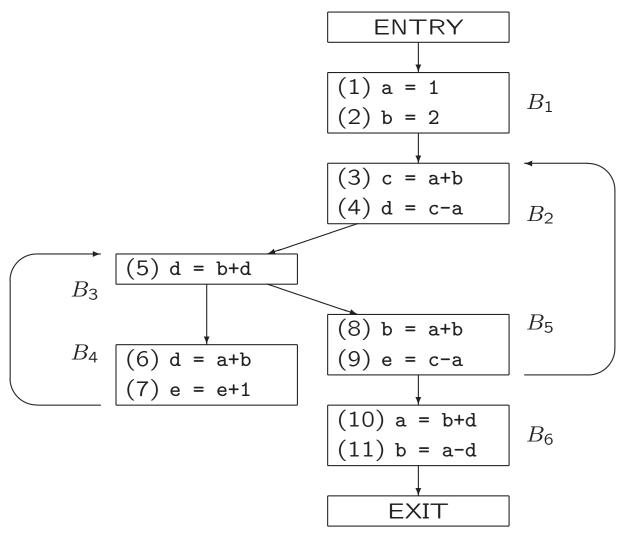
Efficient Iterative Data-Flow Analysis



Order of blocks in second for-loop matters

Exercises

Flow Graph For Data Flow Analysis



9.6 Loops in Flow Graphs

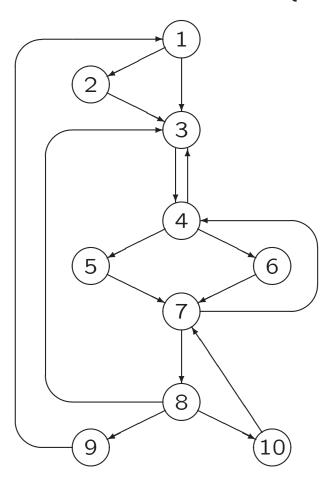
- Optimizations of loops have significant impact
- Loops affect speed of convergence of iterative DFA
- Essential to identify loops
- Used in region based analysis (not for exam)

9.6.1 Dominators

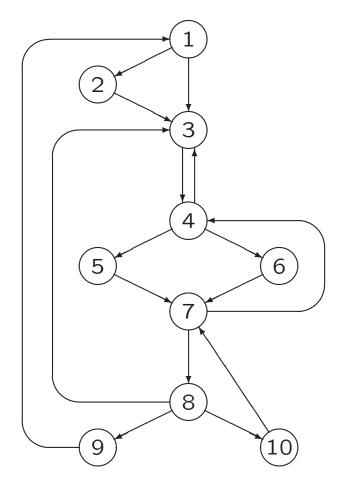
Dominators:

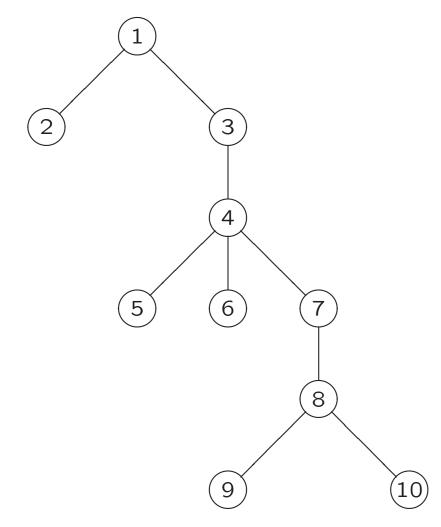
- Node d dominates node n if every path from ENTRY node to n goes through d: d dom n
- Node n dominates itself
- Loop entry dominates all nodes in loop
- Immediate dominator m of n: last dominator on (any) path from ENTRY node to n
 - if $d \neq n$ and d dom n, then d dom m

Dominators (Example)



Dominator Trees (Example)





Finding Dominators

Forward data-flow analysis

N is set of all nodes

```
OUT[ENTRY] = {ENTRY}

for each node n other than ENTRY

OUT[n] = N

while (changes to any OUT occur)

for each node n other than ENTRY

{ IN[n] = \cap_{\text{predecessors } m \text{ of } n} \text{OUT}[m]

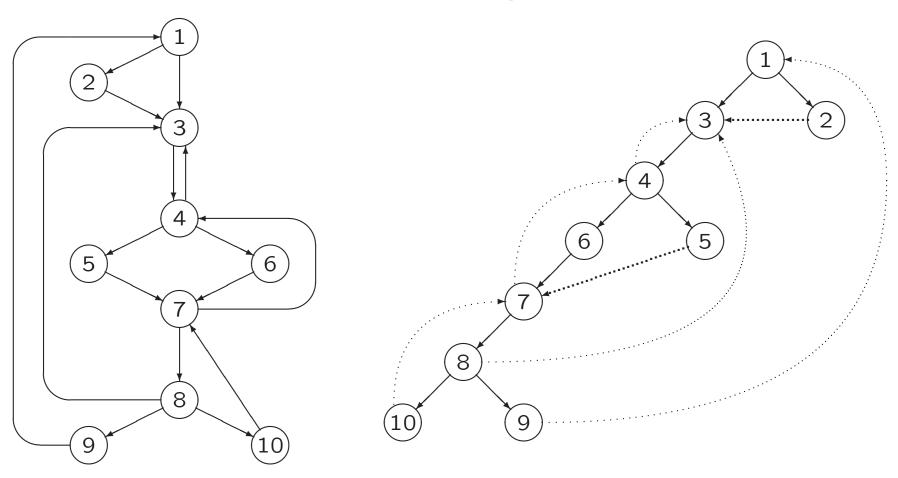
OUT[n] = IN[n] \cup \{n\}

}
```

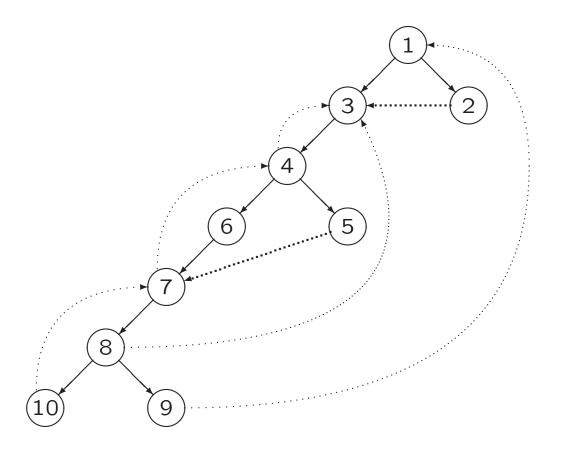
9.6.2 Depth-First Ordering

- Depth-first traversal of graph
 - Start from entry node
 - Recursively visit neighbours (in any order)
 - Hence, visit nodes far away from the entry node as quickly as it can (DF)

A Depth-First Spanning Tree



9.6.3 Edges in Depth-First Spanning Tree



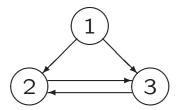
- Advancing edges
- Retreating edges
- Cross edges
- Back edge $a \rightarrow b$, if b dominates a(regardless of DFST)
- Each back edge is retreating edge in DFST
- Flow graph is reducible, if each retreating edge in any DFST is back edge

9.6.3 Edges in Depth-First Spanning Tree

A different depth-first spanning tree. . .

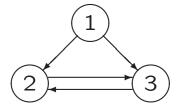
9.6.3 Edges in Depth-First Spanning Tree

Two different depth-first spanning trees...



9.6.4 Reducibility

- In practice, almost every flow graph is reducible
- Example of nonreducible flow graph (with advancing edges)



- To decide on reducibility:
 - 1. Remove back edges
 - 2. Is remaining graph acyclic?

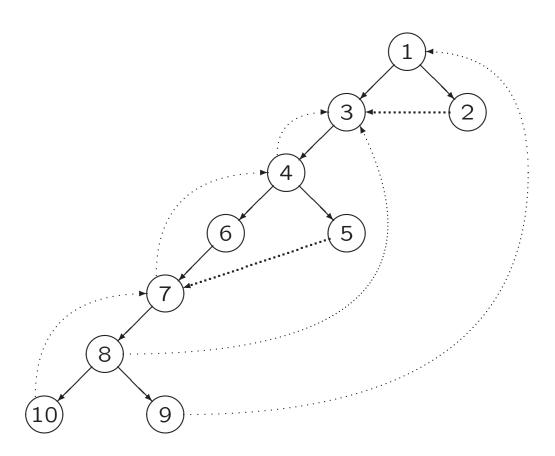
9.6.6 Natural loops

If loop has single-entry node, then compiler can assume certain initial conditions

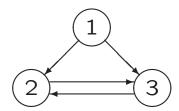
Natural loop

- 1. Has single-entry node: header
- 2. Has back edge to header
- ullet Each back edge $n \to d$ determines natural loop, consisting of
 - **–** d
 - all nodes that can reach n without going through d
- Constructing natural loop of back edge. . .

Natural Loops (Example)



No Natural Loops



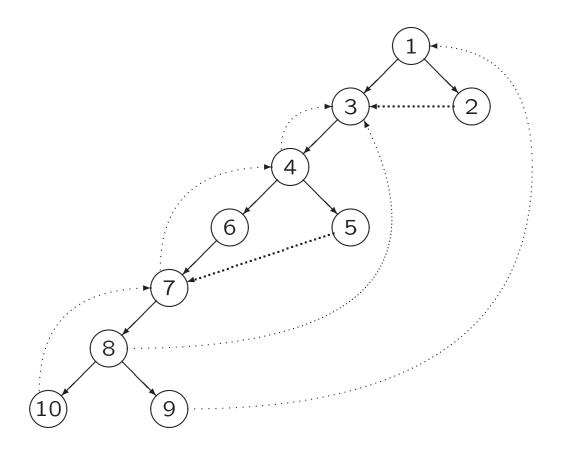
Natural Loops

- Useful property: unless two natural loops have same header
 - either they are disjoint
 - or one is nested within other

Allows for inside-out optimization

 Assumption: if necessary, combine natural loops with same header...

9.6.2 A Depth-First Ordering



- Depth-First Ordering: nodes in DFST in reverse of postorder
- Example:1,2,3,4,5,6,7,8,9,10
- Edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering

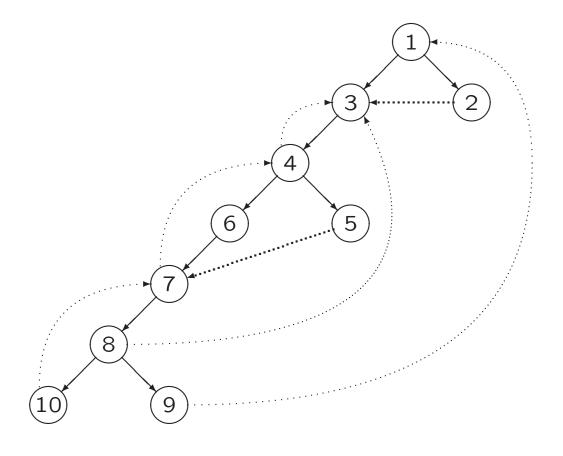
9.6.5 Depth of Flow Graph

 Depth of DFST is largest number of retreating edges on any cycle-free path

If flow graph is reducible, then depth is independent of DFST:
 depth of flow graph

Depth < depth of loop nesting in flow graph

Depth of Flow Graph (Example)



Depth is 3, because of path $10 \rightarrow 7 \rightarrow 4 \rightarrow 3$

9.6.7 Speed of Convergence of Iterative Data-Flow Algorithms

In data-flow analysis, can significant events be propagated to node along acyclic path?

- Yes for
 - Reaching definitions
 - Live-variable analysis
 - Available expressions
- No for
 - Copy propagation

If yes, then fast convergence possible

Efficient Iterative Data-Flow Analysis

Example: computing reaching definitions

```
OUT[ENTRY] = \emptyset

for each basic block B other than ENTRY

OUT[B] = \emptyset

while (changes to any OUT occur)

for each basic block B other than ENTRY

\{IN[B] = \bigcup_{predecessors\ P\ of\ B} OUT[P]

OUT[B] = gen_B \cup (IN[B] - kill_B)

\}
```

Order of blocks in second for-loop matters

Fast Convergence

- Forward data-flow problem: visit nodes in depth-first-order
- ullet Recall: edge $m \to n$ is retreating, if and only if n comes before m in depth-first ordering
- \bullet Example: path of propagation of definition d:

$$3 \rightarrow 5 \rightarrow 19 \rightarrow 35 \rightarrow 16 \rightarrow 23 \rightarrow 45 \rightarrow 4 \rightarrow 10 \rightarrow 17$$

- Number of iterations: 1 + depth (+ 1)
- Typical flow graphs have depth 2.75
- Backward data-flow problem: visit nodes in reverse of depthfirst-order

En verder...

- Vrijdag 4 december: practicum over opdracht 4
- Dinsdag 8 december: inleveren opdracht 4
- Maandag 14 december, 14:00–17:00: tentamen
- Vragenuur ?

Compiler constructie

college 9 Code Optimization

Chapters for reading: 9.2, 9.6