Fundamentele Informatica 3 Antwoorden op geselecteerde opgaven uit Hoofdstuk 9 John Martin: Introduction to Languages and the Theory of Computation

(fourth edition)

Jetty Kleijn, Rudy van Vliet

Voorjaar 2012

9.1 Show that the relation \leq (reducibility, for languages or decision problems) is reflexive and transitive. Give an example to show that it is not symmetric.

Recall: for two languages $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, we write $L_1 \leq L_2$ if there is a computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that for all $x \in \Sigma_1^*$: $x \in L_1$ if and only if $x \in L_2$.

Reflexivity. $L \leq L$ always holds: take for f the identity mapping.

Transitivity. Assume $L_1 \leq L_2$ and $L_2 \leq L_3$, then we have to prove that $L_1 \leq L_3$. Let $f_1 : \Sigma_1^* \to \Sigma_2^*$ be the reduction from L_1 to L_2 and let $f_2 : \Sigma_2^* \to \Sigma_3^*$ be the reduction from L_2 to L_3 .

Then, for all $x \in \Sigma_1^*$: $x \in L_1$ iff $f_1(x) \in L_2$ iff $f_2(f_1(x)) \in L_3$.

The function $f_2 \circ f_1$ obviously is computable and thus $L_1 \leq L_3$. Not symmetric. A simple example are $L_1 = \{a\}^*$ and $L_2 = \{\Lambda\} \subseteq \{a\}^*$. The function $f : \{a\}^* \to \{a\}^*$ defined by $f(a^k) = \Lambda$ for all $k \geq 0$ is computable and has the property that for all $w \in \{a\}^*$ it holds that $w \in L_1$ if and only if $f(w) = \Lambda \in L_2$. Thus $L_1 \leq L_2$, but $L_2 \leq L_1$ does not hold: there exists no (total) function $g : \{a\}^* \to \{a\}^*$ such that if $w \neq \Lambda$, then $w \notin L_1 = \{a\}^*$.

Extras

As another example that \leq is not symmetric we use the idea that whenever $L \leq L'$, then if L is not recursive (or recursively enumerable), then also L' is not recursive (recursively enumerable, respectively), see Theorem 9.7 and Exercise 9.3. Thus $L \leq L'$ implies that L cannot be harder to solve than L'.

Now let $L_1 = \{a\}^+$ and let $L_2 = SA = \{w \in \{0,1\}^* \mid w = e(T) \text{ for some TM } T \text{ and } w \in L(T)\}$. It appears that L_1 is an 'easier' language than L_2 . Indeed, let T_0 be the (trivial) Turing machine which accepts $\{0,1\}^+$. Note that $e(T_0) \in L_2$. Then $L_1 \leq L_2$ using the reduction $f(\Lambda) = \Lambda$ and $f(a^k) = e(T_0)$ for all $k \geq 1$. Clearly, f is Turing-computable and we have, for all a^k , that $a^k \in L_1$ if and only if $f(a^k) = e(T_0) \in L_2$.

Conversely, there cannot exist a reduction $g : \{0,1\}^* \to \{a\}^+$ from L_2 to L_1 because L_1 is a recursive language and $L_2 = SA$ is not recursive: the existence of such a g would imply that we could decide membership of SA by reducing it to L_1 .

Despite the suggestive notation, \leq is *not* a partial ordering, because it is not asymmetric:

Let $L_1 = \{a^{2n} \mid n \ge 0\}$ and $L_2 = \{a^{2n+1} \mid n \ge 0\}$. Then $L_1 \le L_2$ via the reduction f_1 defined by $f_1(a^k) = a^{k+1}$ for all $k \ge 0$. Clearly $a^k \in L_1$ if and only if $f_1(a^k) = a^{k+1} \in L_2$. Also, $L_2 \le L_1$, now via the reduction f_2 defined by $f_2(a^k) = a^{k+1}$ for all $k \ge 0$. Clearly $a^k \in L_2$ if and only if $f_2(a^k) = a^{k+1} \in L_1$.

Consequently, $L_1 \leq L_2$ and $L_2 \leq L_1$, but $L_1 = L_2$ does not hold.

We could say that two languages (problems) are 'equivalent' if they can be reduced to one another: $L_1 \sim L_2$ holds if $L_1 \leq L_2$ and $L_2 \leq L_1$. It is now easy to see that \sim is indeed an equivalence relation indicating that one language is 'as difficult' as the other.

See also the proof of Theorem 9.9(4) and Exercise 9.10.

9.3 Let $L_1, L_2 \subseteq \Sigma^*$ be two languages such that $L_1 \leq L_2$ and L_2 is recursively enumerable. Prove that L_1 is also recursively enumerable.

Let $f: \Sigma^* \to \Sigma^*$ be a function that reduces L_1 to L_2 and let T_f be a Turing machine that computes f. Let T_2 be a Turing machine such that $L(T_2) = L_2$. Consider the composite TM T_fT_2 . When given a word $x \in \Sigma^*$ as input, it transforms first x into f(x) which is input to T_2 and thus accepted if and only if $f(x) \in L_2$. Since $f(x) \in L_2$ if and only if $x \in L_1$ it follows that T_fT_2 accepts x if and only if $x \in L_1$.

In other words $L_1 = L(T_f T_2)$ and so L_1 is recursively enumerable.

9.4 Let $L \subseteq \Sigma^*$ be a language such that $L \neq \emptyset$ and $L \neq \Sigma^*$. Show that any recursive language can be reduced to L. Let $u, v \in \Sigma^*$ be such that $u \in L$ and $v \notin L$. Now let L' be a recursive language over Σ . Define $f : \Sigma^* \to \Sigma^*$ by

f(w) = u if $w \in L'$ and f(w) = v if $w \notin L'$.

It is immediate that, for all $w \in \Sigma^*$, we have that $w \in L'$ iff $f(w) \in L$. Moreover, f is computable, because L' is recursive. Thus $L' \leq L$.

9.5 (see also Exercise 8.6c)

Given an (effective) enumeration of 4-tuples (n, x, y, z) consisting of positive integers with $n \ge 3$, one can build a Turing machine that tests these 4-tuples for the equality $x^n + y^n = z^n$ and stops successfully as soon as the equality is satisfied. This TM stops given an empty tape as input, if and only if Fermat's last theorem is false. Therefore, a solution to the halting problem would also determine the truth or falsity of Fermat's last theorem.

9.6 $Acc = \{e(T)e(w) \mid T \text{ is a TM and } T \text{ accepts } w\}.$ Let L be any recursively enumerable language over some alphabet Σ . Then $L \leq Acc$ which can be seen as follows. Let T_0 be a Turing machine accepting L. Define $f : \Sigma^* \to \{0, 1\}^*$ by

$$f(x) = e(T_0)e(x)$$
 for all $x \in \Sigma^*$.

Clearly f is computable (a simple application of e). Furthermore, for all $x \in \Sigma^*$, we have $x \in L$ if and only if T_0 accepts x if and only if $f(x) = e(T_0)e(x) \in Acc$.

9.7 Let L be a language and T a Turing machine such that L(T) = L. Assume that the problem

Given a string w; does T accept w?

is decidable. Then L is a recursive language: to decide whether a word $x \in L$ we simply use the algorithm (Turing machine) for the given problem and decide whether T accepts x, that is whether $x \in L(T) = L$.

Consequently, if Turing machine M is such that L(M) is not recursive, it must be the case that the problem

Given a string w; does M accept w?

is undecidable.

9.8 Show that for any word $x \in \Sigma^*$, the problem Accepts:

Given TM T and string w; is $w \in L(T)$?

can be reduced to the problem Accepts-x:

Given TM T; is $x \in L(T)$?

To prove this we have to transform each instance (T, w) of Accepts to an instance T' of Accepts-x such that $w \in L(T)$ iff $x \in L(T')$. The function F yields, given a pair (T, w), the Turing machine F(T, w) = T' which operates as follows:

given input y, T' begins with comparing y with x;

if y = x, then

it erases the tape, writes w on the tape from cell 1 onwards, and then simulates T on w;

thus T' accepts x if and only if $w \in L(T)$

if $y \neq x$, then the behaviour of T' is not relevant, let us say it moves to h_a . Clearly, this is an algorithmic procedure to obtain T' = F(T, w). So, Accepts reduces to Accepts-x.

Since Accepts is undecidable, it follows that Accepts-x is undecidable.

9.9 Construct a reduction from the problem Accepts- Λ :

Given TM T; is $\Lambda \in L(T)$?

to the problem Accepts- $\{\Lambda\}$:

Given TM T; is $L(T) = \{\Lambda\}$?

We have to provide an algorithm which when given a TM T transforms it into a TM T' such that $\Lambda \in L(T)$ if and only if $L(T') = \{\Lambda\}$.

Let T' be the Turing machine which behaves as T when given input Λ and immediately rejects every other input.

Thus $L(T') = \emptyset$ if $\Lambda \notin L(T)$ and $L(T') = \{\Lambda\}$ if $\Lambda \in L(T)$. We conclude that $\Lambda \in L(T)$ if and only if $L(T') = \{\Lambda\}$.

9.10

a Let $C = A \cup B$ and $D = A \cap B$. Then A = B if and only if $C \subseteq D$. **b** Show that the problem Equivalent:

Given two TMs T_1 and T_2 ; is $L(T_1) = L(T_2)$?

can be reduced to the problem Subset:

Given two TMs T_1 and T_2 ; is $L(T_1) \subseteq L(T_2)$?

Now we can use the proof of Theorem 8.4. There, constructions are provided which, given two arbitrary Turing machines T_1 and T_2 yield a TM T_{\cup} and a TM T_{\cap} such that $L(T_{\cup}) = L(T_1) \cup L(T_2)$ and $L(T_{\cap}) = L(T_1) \cap L(T_2)$.

By **a**, these constructions together provide a reduction from Equivalent to Subset: transform any instance (T_1, T_2) of Equivalent into the instance (T_{\cup}, T_{\cap}) of Subset of the corresponding union and intersection TMs. Then $L(T_1) = L(T_2)$ if and only if $L(T_{\cup}) \subseteq L(T_{\cap})$.

9.12

 \mathbf{a} decidable

Let T be an arbitrary TM. We have to decide whether it ever reaches another of its states than its initial state when started with a blank tape.

Execute T with empty input,

then we know the answer and stop the procedure as soon as

T changes state at some moment; stop with answer YES

otherwise we encounter one of the following situations:

T halts (h_a and h_r are not considered to be states of T); stop with answer NO

T moves its head to the right; since it still is in q_0 , it is in an infinite loop; stop with answer NO

T scans cell 0 and sees in that cell a tape symbol it has seen there before; since it still is in q_0 , it is in an infinite loop; stop with answer NO. **b** and **c** are both undecidable.

SKETCH of proof: for both, this can be shown by transforming any given TM into an equivalent one (defining the same language) with a new dummy state (q) just before the transitions to h_a . Then Accepts- Λ can be shown to reduce to the problem of **b** and AcceptsSomething to the problem of **c**.

d and e are both undecidable.

SKETCH of proof: every Turing machine can be transformed into one which defines the same language and in which all finite computations consist of an even number of steps. Then Accepts- Λ can be shown to reduce to the problem of **d**, and AcceptsSomething can be shown to reduce to the problem of **e**.

f and **g** are undecidable (HINT: every TM can be effectively transformed into an equivalent one which for each input either stops successfully or enters an infinite computation (it never crashes or enters h_r), see Exercise 7.12 and the proof of Theorem 9.8; then the negation of Accepts reduces to the problem of **f**, and the negation of AcceptsEverything reduces to the problem of **g**).

h and **i** are undecidable (HINT: T rejects input w means that the computa-

tion of T on w will eventually halt unsuccessfully: it 'crashes' or enters h_r ; give a transformation which given a TM interchanges crashing and successfully halting; then use Accepts and AcceptsSomething respectively).

 \mathbf{j} and \mathbf{k} are decidable (HINT: within 10 steps a TM cannot have seen more than the first 10 symbols of its input).

9.19 Four decision problems are given involving unrestricted grammars. The proof of Theorem 8.14 shows that for every Turing machine T an unrestricted grammar G_T can be constructed generating L(T). Consequently, to each of the given problems the corresponding problem for Turing machines can be reduced. Since these problems (Accepts, AcceptsSomething, Accepts-Everything, and Equivalent) are undecidable, the given problems are also undecidable.

9.27 Give a solution or show that none exists for each of the following two instances of PCP:

a $(\alpha_1, \beta_1) = (100, 10),$ $(\alpha_2, \beta_2) = (101, 01),$ $(\alpha_3, \beta_3) = (110, 1010).$ Any solution has to begin with the first pair (100, 10);

this should then be followed by a pair the second component of which starts with a 0; only pair 2 qualifies and we obtain (100101, 1001);

once more we have to continue with pair 2 and we obtain (100101101, 100101); the second component is now a string 101 'behind', thus we have to continue with pair 1 or with pair 3.

In the first case we get (100101101100, 10010110) and we are stuck, because the second component is now 1100 behind and none of the β 's fit this pattern.

In the second case we get (100101101110, 1001011010) which is a mistake because the 10th position is a 1 in the first word, but a 0 in the second word. Thus this instance has no solution.

b $(\alpha_1, \beta_1) = (1, 10),$ $(\alpha_2, \beta_2) = (01, 101),$ $(\alpha_3, \beta_3) = (0, 101),$ $(\alpha_4, \beta_4) = (001, 0).$

Each solution has to start with the first or the fourth pair.

One solution is the sequence 1,4,2: $\alpha_1 \alpha_4 \alpha_2 = 100101 = \beta_1 \beta_4 \beta_2$. Can you find still other ones?

9.28 Restricting PCP to instances in which the alphabet consists of at most two symbols does not lead to a decidable problem, because the general problem can be reduced to this simplified version by a binary encoding: Let $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_n, \beta_n)$ be an instance of PCP with each $\alpha_i, \beta_i \in \Sigma^*$ where Σ is an alphabet consisting of $m \geq 1$ symbols. We encode $\Sigma = \{a_1, \ldots, a_m\}$ as follows: $c(a_i) = 0^i 1$ for all $i \in \{1, \ldots, m\}$. This encoding is extended to words by applying it to each letter in the word. Note that it is injective, in the sense that, for all words $u, v \in \Sigma^*$, we have c(u) = c(v) if and only if u = v.

Consequently we have mapped the instance $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_n, \beta_n)$ over Σ to the instance $(c(\alpha_1), c(\beta_1)), (c(\alpha_2), c(\beta_2)), \ldots, (c(\alpha_n), c(\beta_n))$ of PCP over the binary alphabet $\{0, 1\}$.

It is not difficult to see that the original instance has a solution if and only if its encoding has a solution. Thus if PCP with (at most) binary alphabets would be decidable, then also the general Post Correspondence Problem, a contradiction.

9.29 In contrast to the previous exercise, restricting PCP to instances in which the alphabet consists of one symbol does lead to a decidable problem. Words over a unary alphabet can differ only with respect to their length. Words of the same length are equal. This is the basis of the algorithm below. Let Σ be an alphabet consisting of one symbol.

Let $(\alpha_1, \beta_1), (\alpha_2, \beta_2), \ldots, (\alpha_n, \beta_n)$ be an instance of PCP with each $\alpha_i, \beta_i \in \Sigma^*$. Assume that $\Sigma = \{0\}$. Thus for each $i \in \{1, \ldots, n\}$ there are $l_i, m_i \ge 1$ such that $\alpha_i = 0^{l_i}$ and $\beta_i = 0^{m_i}$.

Now first check whether there exists an *i* such that $l_i = m_i$. If yes, then a solution has been found $(\alpha_i = \beta_i)$.

If no, then for all i we have $l_i \neq m_i$. Now check whether $l_i > m_i$ for all i.

If yes, then the instance has no solution (any sequence of α 's will be longer than the corresponding sequence of β 's).

If no, then check whether $l_i < m_i$ for all *i*. If yes, then the instance has no solution (any sequence of α 's will be shorter than the corresponding sequence of β 's).

The only remaining case is that there exist two different indices j and k in $\{1, \ldots, n\}$ such that $l_j > m_j$ and $l_k < m_k$ and in this case the instance always has a solution:

Let $p = l_j - m_j$ and $q = m_k - l_k$. Then r times the pair (α_j, β_j) leaves the β -sequence $r \times p$ symbols behind, while s times the pair (α_k, β_k) adds $s \times q$ symbols more to the β -sequence than to the α -sequence. Thus if we let r = q and s = p, then the α -sequence and the β -sequence are of the same length. Thus a solution is $i_1 = j, \ldots, i_q = j, i_{q+1} = k, \ldots, i_{q+p} = k$, because $(0^{l_j})^q (0^{l_k})^p = (0^{m_j})^q (0^{m_k})^p$.

9.32 Show that each of the following problems for context-free grammars is undecidable. We do this in each case by a reduction from the (undecidable)

problem CFG-GeneratesAll:

Given a CFG G with terminal alphabet
$$\Sigma$$
; is $L(G) = \Sigma^*$?

a CFG-Equivalence:

Given two CFGs
$$G_1$$
 and G_2 ; is $L(G_1) = L(G_2)$?

Let G be a CFG with terminal alphabet Σ . Define the CFG G_{Σ} by the productions $S \to \Lambda$ and $S \to aS$ for all $a \in \Sigma$. Thus $L(G_{\Sigma}) = \Sigma^*$. With each instance G of CFG-GeneratesAll, we thus associate the instance (G, G_{Σ}) of CFG-Equivalence. This is clearly algorithmic, and since $L(G) = \Sigma^*$ if and only if $L(G) = L(G_{\Sigma})$ we have reduced CFG-GeneratesAll to CFG-Equivalence.

b CFG-Subset:

Given two CFGs G_1 and G_2 ; is $L(G_1) \subseteq L(G_2)$?

Let G be a CFG with terminal alphabet Σ . Define the CFG G_{Σ} as above. Thus $L(G_{\Sigma}) = \Sigma^*$. With each instance G of CFG-GeneratesAll, we associate the instance (G_{Σ}, G) of CFG-Subset. This is clearly algorithmic, and since $L(G) = \Sigma^*$ if and only if $L(G_{\Sigma}) \subseteq L(G)$ we have reduced CFG-GeneratesAll to CFG-Subset.

 ${\bf c}$ CFG-Regularity:

Given CFG G and regular language R; is L(G) = R?

With each instance G with terminal alphabet Σ of CFG-GeneratesAll we associate the instance (G, Σ^*) of CFG-Regularity. (Σ^* is a regular language.) This is clearly algorithmic, and since obviously $L(G) = \Sigma^*$ if and only if $L(G) = \Sigma^*$ we have reduced CFG-GeneratesAll to CFG-Regularity.

versie 7 juni 2012