
Fundamentele Informatica 3

Antwoorden op geselecteerde opgaven uit

Hoofdstuk 9
John Martin: Introduction to Languages and the Theory of Computation

(fourth edition)

Jetty Kleijn, Rudy van Vliet

Voorjaar 2012

9.1 Show that the relation ≤ (reducibility, for languages or decision prob-
lems) is reflexive and transitive. Give an example to show that it is not
symmetric.
Recall: for two languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗

2, we write L1 ≤ L2 if there
is a computable function f : Σ∗

1 → Σ∗

2 such that for all x ∈ Σ∗

1: x ∈ L1 if
and only if x ∈ L2.
Reflexivity. L ≤ L always holds: take for f the identity mapping.
Transitivity. Assume L1 ≤ L2 and L2 ≤ L3, then we have to prove that
L1 ≤ L3. Let f1 : Σ∗

1 → Σ∗

2 be the reduction from L1 to L2 and let
f2 : Σ

∗

2 → Σ∗

3 be the reduction from L2 to L3.
Then, for all x ∈ Σ∗

1: x ∈ L1 iff f1(x) ∈ L2 iff f2(f1(x)) ∈ L3.
The function f2 ◦ f1 obviously is computable and thus L1 ≤ L3.
Not symmetric. A simple example are L1 = {a}∗ and L2 = {Λ} ⊆ {a}∗.
The function f : {a}∗ → {a}∗ defined by f(ak) = Λ for all k ≥ 0 is com-
putable and has the property that for all w ∈ {a}∗ it holds that w ∈ L1 if
and only if f(w) = Λ ∈ L2. Thus L1 ≤ L2, but L2 ≤ L1 does not hold:
there exists no (total) function g : {a}∗ → {a}∗ such that if w 6= Λ, then
w 6∈ L1 = {a}∗.

Extras

As another example that ≤ is not symmetric we use the idea that whenever
L ≤ L′, then if L is not recursive (or recursively enumerable), then also L′

is not recursive (recursively enumerable, respectively), see Theorem 9.7 and
Exercise 9.3. Thus L ≤ L′ implies that L cannot be harder to solve than L′.

1

Now let L1 = {a}+ and let L2 = SA = {w ∈ {0, 1}∗ | w = e(T) for some
TM T and w ∈ L(T)}. It appears that L1 is an ‘easier’ language than
L2. Indeed, let T0 be the (trivial) Turing machine which accepts {0, 1}+.
Note that e(T0) ∈ L2. Then L1 ≤ L2 using the reduction f(Λ) = Λ and
f(ak) = e(T0) for all k ≥ 1. Clearly, f is Turing-computable and we have,
for all ak, that ak ∈ L1 if and only if f(ak) = e(T0) ∈ L2.
Conversely, there cannot exist a reduction g : {0, 1}∗ → {a}+ from L2 to
L1 because L1 is a recursive language and L2 = SA is not recursive: the
existence of such a g would imply that we could decide membership of SA
by reducing it to L1.

Despite the suggestive notation, ≤ is not a partial ordering, because it is
not asymmetric:
Let L1 = {a2n | n ≥ 0} and L2 = {a2n+1 | n ≥ 0}. Then L1 ≤ L2 via
the reduction f1 defined by f1(a

k) = ak+1 for all k ≥ 0. Clearly ak ∈ L1

if and only if f1(a
k) = ak+1 ∈ L2. Also, L2 ≤ L1, now via the reduction

f2 defined by f2(a
k) = ak+1 for all k ≥ 0. Clearly ak ∈ L2 if and only if

f2(a
k) = ak+1 ∈ L1.

Consequently, L1 ≤ L2 and L2 ≤ L1, but L1 = L2 does not hold.
We could say that two languages (problems) are ‘equivalent’ if they can be
reduced to one another: L1 ∼ L2 holds if L1 ≤ L2 and L2 ≤ L1. It is
now easy to see that ∼ is indeed an equivalence relation indicating that one
language is ‘as difficult’ as the other.
See also the proof of Theorem 9.9(4) and Exercise 9.10.

9.3 Let L1, L2 ⊆ Σ∗ be two languages such that L1 ≤ L2 and L2 is recur-
sively enumerable. Prove that L1 is also recursively enumerable.
Let f : Σ∗ → Σ∗ be a function that reduces L1 to L2 and let Tf be a Turing
machine that computes f . Let T2 be a Turing machine such that L(T2) = L2.
Consider the composite TM TfT2. When given a word x ∈ Σ∗ as input, it
transforms first x into f(x) which is input to T2 and thus accepted if and
only if f(x) ∈ L2. Since f(x) ∈ L2 if and only if x ∈ L1 it follows that TfT2

accepts x if and only if x ∈ L1.
In other words L1 = L(TfT2) and so L1 is recursively enumerable.

9.4 Let L ⊆ Σ∗ be a language such that L 6= ∅ and L 6= Σ∗.
Show that any recursive language can be reduced to L.
Let u, v ∈ Σ∗ be such that u ∈ L and v 6∈ L.
Now let L′ be a recursive language over Σ. Define f : Σ∗ → Σ∗ by

f(w) = u if w ∈ L′ and f(w) = v if w 6∈ L′.

2

It is immediate that, for all w ∈ Σ∗, we have that w ∈ L′ iff f(w) ∈ L.
Moreover, f is computable, because L′ is recursive.
Thus L′ ≤ L.

9.5 (see also Exercise 8.6c)
Given an (effective) enumeration of 4-tuples (n, x, y, z) consisting of positive
integers with n ≥ 3, one can build a Turing machine that tests these 4-tuples
for the equality xn + yn = zn and stops successfully as soon as the equality
is satisfied. This TM stops given an empty tape as input, if and only if
Fermat’s last theorem is false. Therefore, a solution to the halting problem
would also determine the truth or falsity of Fermat’s last theorem.

9.6 Acc = {e(T)e(w) | T is a TM and T accepts w}.
Let L be any recursively enumerable language over some alphabet Σ.
Then L ≤ Acc which can be seen as follows.
Let T0 be a Turing machine accepting L. Define f : Σ∗ → {0, 1}∗ by

f(x) = e(T0)e(x) for all x ∈ Σ∗.

Clearly f is computable (a simple application of e).
Furthermore, for all x ∈ Σ∗, we have
x ∈ L if and only if T0 accepts x if and only if f(x) = e(T0)e(x) ∈ Acc.

9.7 Let L be a language and T a Turing machine such that L(T) = L.
Assume that the problem

Given a string w; does T accept w?

is decidable. Then L is a recursive language: to decide whether a word
x ∈ L we simply use the algorithm (Turing machine) for the given problem
and decide whether T accepts x, that is whether x ∈ L(T) = L.
Consequently, if Turing machine M is such that L(M) is not recursive, it
must be the case that the problem

Given a string w; does M accept w?

is undecidable.

9.8 Show that for any word x ∈ Σ∗, the problem Accepts:

Given TM T and string w; is w ∈ L(T)?

can be reduced to the problem Accepts-x:

3

Given TM T ; is x ∈ L(T)?

To prove this we have to transform each instance (T,w) of Accepts to an
instance T ′ of Accepts-x such that w ∈ L(T) iff x ∈ L(T ′).
The function F yields, given a pair (T,w), the Turing machine F (T,w) = T ′

which operates as follows:
given input y, T ′ begins with comparing y with x;
if y = x, then

it erases the tape,
writes w on the tape from cell 1 onwards, and
then simulates T on w;

thus T ′ accepts x if and only if w ∈ L(T)

if y 6= x, then the behaviour of T ′ is not relevant, let us say it moves to ha.
Clearly, this is an algorithmic procedure to obtain T ′ = F (T,w).
So, Accepts reduces to Accepts-x.
Since Accepts is undecidable, it follows that Accepts-x is undecidable.

9.9 Construct a reduction from the problem Accepts-Λ:

Given TM T ; is Λ ∈ L(T)?

to the problem Accepts-{Λ}:

Given TM T ; is L(T) = {Λ}?

We have to provide an algorithm which when given a TM T transforms it
into a TM T ′ such that Λ ∈ L(T) if and only if L(T ′) = {Λ}.
Let T ′ be the Turing machine which behaves as T when given input Λ and
immediately rejects every other input.
Thus L(T ′) = ∅ if Λ 6∈ L(T) and L(T ′) = {Λ} if Λ ∈ L(T).
We conclude that Λ ∈ L(T) if and only if L(T ′) = {Λ}.

9.10

a Let C = A ∪B and D = A ∩B. Then A = B if and only if C ⊆ D.
b Show that the problem Equivalent:

Given two TMs T1 and T2; is L(T1) = L(T2)?

can be reduced to the problem Subset:

Given two TMs T1 and T2; is L(T1) ⊆ L(T2)?

4

Now we can use the proof of Theorem 8.4. There, constructions are provided
which, given two arbitrary Turing machines T1 and T2 yield a TM T∪ and a
TM T∩ such that L(T∪) = L(T1) ∪ L(T2) and L(T∩) = L(T1) ∩ L(T2).
By a, these constructions together provide a reduction from Equivalent
to Subset: transform any instance (T1, T2) of Equivalent into the instance
(T∪, T∩) of Subset of the corresponding union and intersection TMs. Then
L(T1) = L(T2) if and only if L(T∪) ⊆ L(T∩).

9.12

a decidable
Let T be an arbitrary TM. We have to decide whether it ever reaches another
of its states than its initial state when started with a blank tape.
Execute T with empty input,
then we know the answer and stop the procedure as soon as
T changes state at some moment; stop with answer YES
otherwise we encounter one of the following situations:
T halts (ha and hr are not considered to be states of T); stop with answer
NO
T moves its head to the right; since it still is in q0, it is in an infinite loop;
stop with answer NO
T scans cell 0 and sees in that cell a tape symbol it has seen there before;
since it still is in q0, it is in an infinite loop; stop with answer NO.
b and c are both undecidable.
SKETCH of proof: for both, this can be shown by transforming any given
TM into an equivalent one (defining the same language) with a new dummy
state (q) just before the transitions to ha. Then Accepts-Λ can be shown to
reduce to the problem of b and AcceptsSomething to the problem of c.
d and e are both undecidable.
SKETCH of proof: every Turing machine can be transformed into one which
defines the same language and in which all finite computations consist of an
even number of steps. Then Accepts-Λ can be shown to reduce to the prob-
lem of d, and AcceptsSomething can be shown to reduce to the problem of
e.
f and g are undecidable (HINT: every TM can be effectively transformed
into an equivalent one which for each input either stops successfully or en-
ters an infinite computation (it never crashes or enters hr), see Exercise 7.12
and the proof of Theorem 9.8; then the negation of Accepts reduces to the
problem of f, and the negation of AcceptsEverything reduces to the problem
of g).
h and i are undecidable (HINT: T rejects input w means that the computa-

5

tion of T on w will eventually halt unsuccessfully: it ‘crashes’ or enters hr;
give a transformation which given a TM interchanges crashing and success-
fully halting; then use Accepts and AcceptsSomething respectively).
j and k are decidable (HINT: within 10 steps a TM cannot have seen more
than the first 10 symbols of its input).

9.19 Four decision problems are given involving unrestricted grammars. The
proof of Theorem 8.14 shows that for every Turing machine T an unrestricted
grammar GT can be constructed generating L(T). Consequently, to each
of the given problems the corresponding problem for Turing machines can
be reduced. Since these problems (Accepts, AcceptsSomething, Accepts-
Everything, and Equivalent) are undecidable, the given problems are also
undecidable.

9.27 Give a solution or show that none exists for each of the following two
instances of PCP:
a (α1, β1) = (100, 10), (α2, β2) = (101, 01), (α3, β3) = (110, 1010).
Any solution has to begin with the first pair (100, 10);
this should then be followed by a pair the second component of which starts
with a 0; only pair 2 qualifies and we obtain (100101, 1001);
once more we have to continue with pair 2 and we obtain (100101101, 100101);
the second component is now a string 101 ‘behind’, thus we have to continue
with pair 1 or with pair 3.
In the first case we get (100101101100, 10010110) and we are stuck, because
the second component is now 1100 behind and none of the β’s fit this pat-
tern.
In the second case we get (100101101110, 1001011010) which is a mistake
because the 10th position is a 1 in the first word, but a 0 in the second word.
Thus this instance has no solution.
b (α1, β1) = (1, 10), (α2, β2) = (01, 101), (α3, β3) = (0, 101),
(α4, β4) = (001, 0).
Each solution has to start with the first or the fourth pair.
One solution is the sequence 1,4,2: α1α4α2 = 100101 = β1β4β2.
Can you find still other ones?

9.28 Restricting PCP to instances in which the alphabet consists of at
most two symbols does not lead to a decidable problem, because the general
problem can be reduced to this simplified version by a binary encoding:
Let (α1, β1), (α2, β2), . . . , (αn, βn) be an instance of PCP with each αi, βi ∈
Σ∗ where Σ is an alphabet consisting of m ≥ 1 symbols.

6

We encode Σ = {a1, . . . , am} as follows: c(ai) = 0i1 for all i ∈ {1, . . . ,m}.
This encoding is extended to words by applying it to each letter in the word.
Note that it is injective, in the sense that, for all words u, v ∈ Σ∗, we have
c(u) = c(v) if and only if u = v.
Consequently we have mapped the instance (α1, β1), (α2, β2), . . . , (αn, βn)
over Σ to the instance (c(α1), c(β1)), (c(α2), c(β2)), . . . , (c(αn), c(βn)) of PCP
over the binary alphabet {0, 1}.
It is not difficult to see that the original instance has a solution if and only
if its encoding has a solution. Thus if PCP with (at most) binary alphabets
would be decidable, then also the general Post Correspondence Problem, a
contradiction.

9.29 In contrast to the previous exercise, restricting PCP to instances in
which the alphabet consists of one symbol does lead to a decidable problem.
Words over a unary alphabet can differ only with respect to their length.
Words of the same length are equal. This is the basis of the algorithm below.
Let Σ be an alphabet consisting of one symbol.
Let (α1, β1), (α2, β2), . . . , (αn, βn) be an instance of PCP with each αi, βi ∈
Σ∗. Assume that Σ = {0}. Thus for each i ∈ {1, . . . , n} there are li,mi ≥ 1
such that αi = 0li and βi = 0mi .
Now first check whether there exists an i such that li = mi. If yes, then a
solution has been found (αi = βi).
If no, then for all i we have li 6= mi. Now check whether li > mi for all i.
If yes, then the instance has no solution (any sequence of α’s will be longer
than the corresponding sequence of β’s).
If no, then check whether li < mi for all i. If yes, then the instance has no
solution (any sequence of α’s will be shorter than the corresponding sequence
of β’s).
The only remaining case is that there exist two different indices j and k

in {1, . . . , n} such that lj > mj and lk < mk and in this case the instance
always has a solution:
Let p = lj − mj and q = mk − lk. Then r times the pair (αj , βj) leaves
the β-sequence r × p symbols behind, while s times the pair (αk, βk) adds
s × q symbols more to the β-sequence than to the α-sequence. Thus if we
let r = q and s = p, then the α-sequence and the β-sequence are of the same
length. Thus a solution is i1 = j, . . . , iq = j, iq+1 = k, . . . , iq+p = k, because
(0lj)q(0lk)p = (0mj)q(0mk)p.

9.32 Show that each of the following problems for context-free grammars is
undecidable. We do this in each case by a reduction from the (undecidable)

7

problem CFG-GeneratesAll:

Given a CFG G with terminal alphabet Σ; is L(G) = Σ∗?

a CFG-Equivalence:

Given two CFGs G1 and G2; is L(G1) = L(G2)?

Let G be a CFG with terminal alphabet Σ. Define the CFG GΣ by the
productions S → Λ and S → aS for all a ∈ Σ. Thus L(GΣ) = Σ∗. With each
instance G of CFG-GeneratesAll, we thus associate the instance (G,GΣ)
of CFG-Equivalence. This is clearly algorithmic, and since L(G) = Σ∗ if
and only if L(G) = L(GΣ) we have reduced CFG-GeneratesAll to CFG-
Equivalence.
b CFG-Subset:

Given two CFGs G1 and G2; is L(G1) ⊆ L(G2)?

Let G be a CFG with terminal alphabet Σ. Define the CFG GΣ as above.
Thus L(GΣ) = Σ∗. With each instance G of CFG-GeneratesAll, we associate
the instance (GΣ, G) of CFG-Subset. This is clearly algorithmic, and since
L(G) = Σ∗ if and only if L(GΣ) ⊆ L(G) we have reduced CFG-GeneratesAll
to CFG-Subset.
c CFG-Regularity:

Given CFG G and regular language R; is L(G) = R?

With each instance G with terminal alphabet Σ of CFG-GeneratesAll we
associate the instance (G,Σ∗) of CFG-Regularity. (Σ∗ is a regular language.)
This is clearly algorithmic, and since obviously L(G) = Σ∗ if and only if
L(G) = Σ∗ we have reduced CFG-GeneratesAll to CFG-Regularity.

versie 7 juni 2012

8

