
Fundamentele Informatica 3

Antwoorden op geselecteerde opgaven uit

Hoofdstuk 8
John Martin: Introduction to Languages and the Theory of Computation

(fourth edition)

Jetty Kleijn, Rudy van Vliet

Voorjaar 2012

8.6 Describe algorithms to enumerate the given sets.
a The set of all pairs (n,m) where n and m are relatively prime, positive
integers.
This is a recursive set: to determine whether a pair (n,m) belongs to it one
could, e.g., determine their greatest common divisor; if that is 1, then (n,m)
is in, otherwise not. An enumerating algorithm could now systematically
generate the set of all pairs (n,m), for instance canonically, guided by the
sum of the elements: (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), (2, 3), . . .
and successively, for each pair just generated, determine (effectively!) whether
it satisfies the condition. If and only if it does, it appears as the next element
of the requested enumeration.

b The set of all strings over {0, 1} which contain a nonnull substring of the
form www.
This is again a recursive set and a similar method as above applies.

c The set {n | n ≥ 0 and ∃x, y, z integers such that xn + yn = zn}.
More or less as before: select an enumeration of 4-tuples (n, x, y, z), compute
for each such tuple xn + yn and zn and compare. In case of equality, n will
be the next element of the list provided it was not listed already.

1

8.10 Let L be a language.
We have to prove that L is accepted by a Turing machine if and only if there
is Turing machine which computes a function with domain L.
The “if” direction is simple: any Turing machine T which computes a func-
tion with domain L stops successfully for all words in L and for no other
words. Thus L(T) = L.
Conversely, assume that L is recursively enumerable and let T be a Turing
machine such that L(T) = L. We modify T as follows. First we take care
that the rightmost cell left non-blank during an accepting computation can
always be found (see Example 7.21 of the book). Then we further adapt the
machine by letting it erase the tape and go back to cell 0. Thus the resulting
TM T ′ accepts exactly the same words as T , that is the words from L, and
moreover any successful computation is terminated with the head on cell
0 of an empty tape. Hence T ′ computes the partial function f(x) = λ if
x ∈ L, and f(x) undefined otherwise.

8.12 We only give the solution of the “if” direction.
Assume that there is an increasing, computable, total function f : Σ∗ →

Σ∗ whose range is L. The range of f is {y ∈ Σ∗ | ∃x ∈ Σ∗ such that f(x) = y}.
Note that it follows from the definition of ‘increasing’ that f is injective.

Let x0, x1, x2, . . . be the strings from Σ∗ in canonical order, and let y be
an arbitary string in Σ∗, hence, y = xn for some n ≥ 0. We can determine
whether y is in the range of f by computing f(x0), f(x1), f(x2), . . ., (which
is possible, because f is a computable, total function) until we find a string
x for which f(x) = y or for which y precedes f(x). Because f is increasing,
we will find such x in at most n+ 1 attempts. If f(x) = y, then y is in the
range of f . Otherwise, y is not in the range of f .

8.17

In this exercise, unrestricted grammars are given through their productions,
and the exercise is to describe the languages they generate.

a Similar to the grammars in Example 8.12 and Example 8.17, but now
the terminal symbols a, b and c may end up in any order. The language
generated is {w ∈ {a, b, c}∗ | na(w) = nb(w) = nc(w)}.

b Similar to the grammar in Example 8.11, but now we have D for dou-
bling a’s and T for trebling. Thus, the language generated is {an | n =
2j3k for some j, k ≥ 0}.

2

8.18 a Every derivation begins with the step S ⇒ TD1D2 after which either
each of the three symbols is rewritten into Λ (hence Λ is in the language) or
the production T → ABCT is applied. This production introduces A’s, B’s,
and C’s in equal numbers. The two productions AB → BA and BA → AB

allow one to rearrange the A’s and B’s in any order, while the productions
CA → AC and CB → BC let the C’s be shifted to the right. The symbols
D1 and D2 — originally at the right end of the string — are crucial for
successful termination (introducing terminal symbols):
D1 can be moved to the left, past C’s with CD1 → D1C on the way changing
B’s into b’s with BD1 → D1b. Note that it is blocked by A’s and a’s. Since
this is the only way to rewrite B’s into terminal strings, it follows that,
if there are any B’s to the left of an A, they cannot terminate and the
derivation is not successful.
D2 can also be moved to the left, on the way changing C’s into a’s with
CD2 → D2a. This is the only way to let the C’s successfully terminate and
therefore they should have been moved to the right of the A’s and B’s.
The language generated by this grammar is {anbnan | n ≥ 0}

b Replace BD1 → D1b by B → b. Then the B can always terminate,
regardless of the positions of the A’s and a’s.

8.19 a To start with we will have productions S → ABCDS |ABCD to
generate strings with 4 types of positions in equal numbers;
BA → AB, CA → AC, DA → AD, to move A’s to the left;
CB → BC, DB → BD to move B’s past C’s and D’s to the left;
DC → CD to move C’s to the left of D’s.
Next we introduce auxiliary variables to force a form AnBnCnDn: A, B,
C, D can be changed into A1, B1, C1, D1, respectively, only if they are
in this order and only A1, B1, C1, D1 can terminate as a or b. Note that
without this intermediate step, errors may occur because a’s (and b’s) occur
in different parts of the string.
We define a new axiom S1 with productions S1 → A1BCDS |A1BCD |Λ,
to have a starter-A1 and to generate Λ.
The subscript 1 propagates from left to right through the string but on its
way it can only pass from A’s to B’s: A1A → A1A1, A1B → A1B1,
from B’s to C’s: B1B → B1B1, B1C → B1C1,
and from C’s to D’s: C1C → C1C1, C1D → C1D1, and D1D → D1D1.
Finally, we include the terminating productions A1 → a, B1 → b, C1 → a

and D1 → b.

Note that the grammar is context-sensitive (monotone), except for the pro-

3

duction S1 → Λ which can anyway be omitted if we do not care about having
Λ in the language.

b Similar to a, but for 3 positions; note that B1 can be replaced by a or b.
S1 → A1BCS |A1BC |Λ,
S → ABCS |ABC,
BA → AB, CA → AC, CB → BC,
A1A → A1A1, A1B → A1B1, B1B → B1B1, B1C → B1C1, C1C → C1C1,
A1 → a, B1 → a | b, C1 → a.

c We have to generate words consisting of a concatenation of 3 copies of the
same word. To this aim we use two variables A and B to travel through the
word and deposit the corresponding terminal in each of the three substrings.
S → LMR,
where L, M , and R mark the beginning of each subword to be; each of them
may disappear (when this happens at the wrong moment, the derivation will
not be successful): L → Λ, M → Λ, R → Λ;
L generates a terminal and sends a messenger: L → LaA |LbB;
the messenger travels to the right: Aa → aA,Ab → bA,Ba → aB,Bb → bB;
until it meets M at the beginning of the second copy where it leaves its
message: AM → MaA,BM → MbB;
the messenger continues to R, at the beginning of the third copy where it
leaves its message and then disappears: AR → Ra,BR → Rb.

d As in c above, but now the messenger has to leave its message not at the
beginning but at the end of the middle subword. We thus change the last
four productions into: AM → MA,BM → MB,AR → aRa,BN → bRb.

8.23 The grammar in Example 8.11 is not context-sensitive (monotone)
because of the productions L → Λ, DR → R, and R → Λ. In order
to make it context-sensitive, we include the markers L and R as subscripts
in other symbols. We use a’s already present in the string to “carry” the
markers. This leads to the grammar:
S → a generates the shortest word a directly and
S → aLaR produces two a’s to carry L and R.
aL → aLaD doubles the first a and introduces D.
aDa → aaaD lets D pass a while doubling it.
aDaR → aaaR, if D meets R then the index disappears and the rightmost a
is doubled.
aL → a and aR → a termination.

4

8.24 We can use the idea from Exercise 8.19(c) to find the following unre-
striced grammar for XX = {xx | x ∈ {a, b}∗}:
S → LR;
L → Λ, R → Λ;
L → LaA | LbB;
Aa → aA,Ab → bA,Ba → aB,Bb → bB;
AR → Ra;BR → Rb.

It has two productions (L → Λ and R → Λ) violating the condition for
context-sensitiveness. In this exercise we do not need Λ as an element of the
language to be generated and we can thus proceed as follows.
L is replaced by A1 or B1 to mark the first symbol of the left half; similarly,
A2 and B2 rather than R are used to mark the first symbol in the right half
of the word. We thus obtain the following context-sensitive grammar:
S → A1A2 | B1B2;
A1 → a, B1 → b, A2 → a, B2 → b;
alternatively, the first marker symbol can produce an additional a or b, and
send the corresponding message:
A1 → A1aA |A1bB, B1 → B1aA |B1bB;
Aa → aA, Ab → bA, Ba → aB, Bb → bB;
when the messenger arrives at the second marker, this marker produces the
terminal:
AA2 → A2a, BA2 → A2b, AB2 → B2a, BB2 → B2b.

8.26

In this exercise, CSG’s are to be given equivalent to the unrestricted gram-
mars in Exercise 8.17, parts (b) and (c).

b The grammar given is not context-sensitive (monotone) because of the
productions L → Λ, DR → R, TR → R, and R → Λ. In order to make
it context-sensitive, the markers can be turned into subscripts just as we
have done in Exercise 8.23 for the grammar from Example 8.11.

8.28 The proof of Theorem 4.9 provides constructions showing that the
family of context-free languages is closed under union, concatenation, and
Kleene *. Given context-free grammars G1 and G2 one may assume that
they do not share any variables. S1 is the axiom of G1 and S2 that of G2.⋃

: Combining the productions and adding a new axiom S with productions
S → S1 and S → S2 yields L(G1) ∪ L(G2).
· : Combining the productions and adding a new axiom S with production
S → S1S2 yields L(G1)L(G2).

5

∗ : Adding a new axiom S to G1 with productions S → SS1 and S → Λ
yields L(G1)

∗.

The first construction (for union) can also be used for the families of RE
languages and of CSLs. Concatenation and Kleene * however need new ideas
because of the context-sensitivity in the rewriting process.

Concatenation: Let G1 be the grammar with production S1 → a and let
G2 be the grammar with productions S2 → aB, aB → Ba, b → b. Thus
L(G1) = {a} and L(G2) = {ab, ba}.
Using the above construction we obtain S ⇒ S1S2 ⇒2 aaB ⇒ aBa ⇒
Baa ⇒ baa which is not in L(G1)L(G2) = {aab, aba}.

Kleene * (for CSLs Kleene + with productions S → SS1 | S1):
Let G1 be the context-sensitive grammar given by S1 → BaB, aB → Ba,
b → b. Then L(G1) = {bab, bba}.
Using the above construction we obtain S ⇒∗ S1S1 ⇒2 BaBBaB ⇒4

BBBBaa ⇒4 bbbbaa which is not in L(G1)
+.

8.35 = proof of Theorem 8.25. . .
Let A be a countable set and let B ⊆ A. We must show that B is countable.
If B is finite, there is nothing to prove (B is countable by definition).
Thus assume that B is infinite. Then also A is infinite and since it is count-
able, there is a bijection f from N to A. Thus A = {f(0), f(1), f(2), . . .}.
Let i0 be the smallest i ∈ N such that f(i) ∈ B and let, for each j ≥ 1,
ij be the smallest i ∈ N such that i > ij−1 and f(i) ∈ B. Thus B =
{f(i0), f(i1), f(i2), . . .} and it follows that B is countable since the function
g from N to B defined g(j) = f(ij) for all j ∈ N is a bijection.

8.36 We must show that S is an infinite set, if and only if there is a bijection
from S to a proper subset of S.

First assume that S is finite. We have to show that there is no proper subset
of S to which a bijection exists from S.
If S is empty, it has no proper subset and we are done. If S consists of
only one element, then its only proper subset is the empty set and obviously
there exists no bijection from S to the empty set.
We proceed by an inductive argument and consider now a set S with n+ 1
elements for some n ≥ 1 with as induction hypothesis that no set of n

elements allows a bijection to one of its proper subsets.
Now suppose that f is a bijection from S to T , a proper subset of S. Let
s ∈ S−T and g be the restriction of f to S−{s}. Since f is injective on S,

6

so is g on S − {s}. We have that g(S − {s}) = f(S) − {f(s)} because f is
injective. Consequently, g(S−{s}) is a proper subset of T and hence also a
proper subset of S − {s}, since s 6∈ T .
Thus g is a bijection from S−{s} to a proper subset of S−{s}, contradicting
the induction hypothesis.

Conversely, consider an infinite set S. By Theorem 8.25, S has a countably
infinite subset I = {f(0), f(1), f(2), . . .} where f is a bijection from N to
I. Let g : S → S be the function defined by g(s) = s if s ∈ S − I and
g(f(i)) = f(i+ 1) for all i ∈ N. This g is a bijection from S to S − {f(0)},
a proper subset of S.

8.37 Both countability and uncountability are preserved under bijections:
Let f : S → T be a bijection.
First consider the case that S is countable. If S is finite, then T is finite. If S
is countably infinite, then there is a bijection g : N → S. Then f ◦g : N → T

is also a bijection, which implies that T is countably infinte.
Next consider the case that T is countable. If T is finite, then S is finite.
If T is countably infinite, then there exists a bijection g : N → T . Observe
that f−1 : T → S is a bijection. Consequently, f−1◦g : N → S is a bijection,
which implies that S is countably infinite.

8.38 Let S and T be two sets such that S is uncountable and T is countable.
Consider S − T . Observe that S = (S − T) ∪ (S ∩ T). Since S ∩ T ⊆ T ,
we know from Theorem 8.25 that S ∩ T is countable. If S − T would also
be countable, then, by Example 8.28, their union S = (S − T) ∪ (S ∩ T)
is countable, a contradiction. Hence it must be the case that S − T is
uncountable.

8.39 Q is countable:
First observe that once we have a bijection g from N to the nonnegative
rational numbers, then we also have a bijection f from N to Q. Namely, we
let f(0) = g(0), f(2k − 1) = g(k), and f(2k) = −g(k) for all k ≥ 1.
We define a bijection from N to the nonnegative rational numbers by first
listing 0 and next the rational numbers represented by pairs of positive
integers in “canonical” order (grouped according to the increasing sum of
the elements), but leaving out those which have a greatest common divisor
larger than 1 (cf. Exercise 8.6(a)), thus guaranteeing that each rational
number occurs exactly once:
0, (1,1), (1,2), (2,1), (1,3), (3,1), (1,4), (2,3), (3,2), (4,1), (1,5), (5,1), (1,6),
(2,5), (3,4), (4,3), (5,2), (6,1), (1,7), ...

7

This is similar to the walk through the infinite matrix in Figure 8.27, but
double occurrences of rationals — like on the diagonal once we have (1, 1),
or (2, 4) once we have (1, 2) — are now avoided.

8.40

a S is the set consisting of infinite sequences over {0, 1}. Thus each element
s ∈ S is a function from N to {0, 1} giving the symbol (0 or 1) for each
position i of S.
S is uncountable using a direct (diagonal) argument:
Suppose, to the contrary, that S can be listed as S = {s0, s1, s2, . . .}. Define
the sequence/function s : N → {0, 1} by s(i) = 0 if si(i) = 1 and s(i) = 1
if si(i) = 0. Then s ∈ S, but s does not occur in the list s0, s1, s2, A
contradiction with the asumption that S = {s0, s1, s2, . . .}.

8.41 Determine whether the given set is countable or uncountable.
a The set of all sets {a, b, c} consisting of three distinct elements from N is
countable: this follows from b, see there.

b The set F of all finite subsets of N is countable. (Contrast this with 2N,
the set of all subsets of N, which is uncountable by Example 8.31.)
Let, for each i ∈ N, Fi = 2{0,1,...,i} be the set consisting of all subsets of
{0, 1, . . . , i}. Thus each Fi is finite (it has 2i+1 elements). Moreover, for
every finite subset T of N, there is an i such that T ∈ Fi. For example,
if k is the largest element of T , then T ⊆ {0, 1, . . . , k} which implies that
T ∈ 2{0,1,...,k} = Fk.
Hence, F =

⋃∞
i=0

Fi and thus a countable union of countable sets, which by
Example 8.28 implies that F is countable.
Now also a follows: the set consisting of all three-element subsets of N is a
subset of the countable set F and therefore countable (by Theorem 8.25).

c The set P of all partitions of N into a finite number of subsets is uncount-
able. A partition of N consists of a finite number of mutually disjoint subsets
of N which together form N. We assume that each subset in the partition
must be nonempty (otherwise, there would be even more partitions possi-
ble!)
We would like to prove that P is uncountable by establishing a bijection
from the set of all subsets of N to a subset of P : with each set T we would
associate the pair {T,N− T}. This will not work however, because T or its
complement may be empty. Moreover the mapping will not be injective, be-
cause it will yield the same pair for T and for its complement. We therefore
slightly modify this approach:

8

Let V = {T ⊆ N | T 6= ∅ and 0 6∈ T} consist of the nonempty subsets of
N not containing 0. Note that V is uncountable. (The function from 2N to
V which maps ∅ to {1} and all other subsets S ⊆ N to {s + 2 | s ∈ S} is
injective; thus V has an uncountable subset and must therefore, by Theorem
8.25, itself be uncountable.)
For T ∈ V , define g(T) = {T,N−T}. Note that 0 ∈ N−T . It is easy to see
that g is injective. Moreover it is surjective on the set P2 of all partitions
of N consisting of two sets. Since V is uncountable, it follows that P2 is
uncountable. Finally, since P2 is a subset of the set of all partitions of N
into a finite number of subsets, it follows from Theorem 8.25, that also P is
uncountable.

d Since the functions from N to {0, 1} correspond one-to-one with the in-
finite sequences over {0, 1}, the set of all functions from N to {0, 1} is
uncountable by Exercise 8.40(a).

e The set of all functions from {0, 1} to N is countable:
There is a one-to-one correspondence between functions f : {0, 1} → N and
pairs (f(0), f(1)) ∈ N× N and N× N is countable.

f The set of all functions from N to N contains the set from d as subset and
is therefore uncountable (Theorem 8.25).

g The set of all nondecreasing functions from N to N is uncountable:
Consider the following mapping g from the set of all functions from N to
N (part f) to the set of all nondecreasing functions. Let f be an arbitrary
function from N to N. Then the function gf is defined by gf (k) =

∑k
i=0

f(i).
It is easily verified that gf is indeed a nondecreasing function, and that g is
indeed a bijection.

h The set of all regular languages over {0, 1} is countable according to
Theorem 8.25 and Example 8.30: it is a subset of the set of recursively
enumerable languages over {0, 1}, which is countable.

i The set of all context-free languages over {0, 1} is countable as in h: it is
a subset of the set of recursively enumerable languages over {0, 1}, which is
countable.

9

8.42 2N is not countable. Give a set S ⊆ 2N such that both S and 2N − S

are uncountable.
Let S = {A ⊆ N | A consists of even integers only}. This set is uncountable
since there exists a bijection from S to 2N: the function f defined by f(A) =
{n | 2n ∈ A}. Thus S is not countable.
Now consider 2N −S = {A ⊆ N | A contains at least one odd integer}. This
set has as a subset S′ = {A ⊆ N | A 6= ∅ and consists of odd integers only}.
S′ is not countable as follows from the bijection g from S′ to the uncountable
set 2N − {∅} defined by g(A) = {n | 2n+ 1 ∈ A}. Since a countable set has
only countable subsets (Theorem 8.25), it must be the case that 2N − S is
not countable.

8.43 Let us use LRE to denote the set of all recursively enumerable lan-
guages. Show that the set of languages

L = {L ⊆ {0, 1}∗ | L 6∈ LRE and {0, 1}∗ − L 6∈ LRE}

is uncountable.
By Example 8.30, the set

K1 = {L ⊆ {0, 1}∗ | L ∈ LRE}

of recursively enumerable languages over the alphabet {0, 1} is countable.
Since each language over {0, 1} is bijectively related to its complement in
{0, 1}∗, also the set

K2 = {L ⊆ {0, 1}∗ | {0, 1}∗ − L ∈ LRE}

is countable.
Hence their union

K1 ∪ K2 = {L ⊆ {0, 1}∗ | L ∈ LRE or {0, 1}∗ − L ∈ LRE}}

is countable (see Example 8.28).
Note that K1 ∪K2 is the complement of L in the set 2{0,1}

∗

of all languages
over {0, 1}. As follows from Example 8.31 (as explained right before this
example), 2{0,1}

∗

is an uncountable set. Since K1 ∪ K2 is countable and
2{0,1}

∗

= (K1 ∪ K2) ∪ L, Example 8.28 implies that L is uncountable.

versie 5 juni 2012

10

