
Fundamentele Informatica II
Answer to selected exercises 5

John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2011

5.1.a (q0, ab, Z0) ⊢ (q1, b, aZ0) ⊢ (q2,Λ, Z0) ⊢, (q3,Λ, Z0) ⊢, acceptance.
(q0, aab, Z0) ⊢ (q1, ab, aZ0) ⊢ (q1, b, aaZ0) ⊢ (q2,Λ, aZ0) ⊢, crash.
(q0, abb, Z0) ⊢ (q1, bb, aZ0) ⊢ (q2, b, Z0) ⊢, crash.
5.1.b (q0, bbcbb, Z0) ⊢ (q0, bcbb, bZ0) ⊢ (q0, cbb, bbZ0) ⊢ (q1, bb, bbZ0) ⊢ (q1, b, bZ0)
⊢ (q1,Λ, Z0) ⊢ (q2,Λ, Z0), acceptance.
(q0, baca, Z0) ⊢ (q0, aca, bZ0) ⊢ (q0, ca, abZ0) ⊢ (q1, a, abZ0) ⊢ (q1,Λ, bZ0) ̸⊢,
crash.

5.2 We give here all computations of the PDA on aba. Note that the non-
determinism is present only in q0. In that state one can always, whatever
the top of the stack, with a Λ-transition go to state q1. This corresponds to
guessing that the input is of even length and the middle of the string has
been found. Moreover one may switch also to q1 when reading an a or a b,
which correspond to guessing that the input is of odd length and the current
symbol is the middle one. Finally, one may simply read and stack the input
symbol.
(q0, aba, Z0) ⊢ (q1, aba, Z0) ⊢ (q2, aba, Z0) ̸⊢, crash
(q0, aba, Z0) ⊢ (q1, ba, Z0) ⊢ (q2, ba, Z0) ̸⊢, crash
(q0, aba, Z0) ⊢ (q0, ba, aZ0) ⊢ (q1, ba, aZ0) ̸⊢, crash
(q0, aba, Z0) ⊢ (q0, ba, aZ0) ⊢ (q1, a, aZ0) ⊢ (q1,Λ, Z0) ⊢ (q2,Λ, Z0), accep-
tance
(q0, aba, Z0) ⊢ (q0, ba, aZ0) ⊢ (q0, a, baZ0) ⊢ (q1, a, baZ0) ̸⊢, crash
(q0, aba, Z0) ⊢ (q0, ba, aZ0) ⊢ (q0, a, baZ0) ⊢ (q1,Λ, baZ0) ̸⊢, crash
(q0, aba, Z0) ⊢ (q0, ba, aZ0) ⊢ (q0, a, baZ0) ⊢ (q0,Λ, abaZ0) ⊢ (q1,Λ, abaZ0) ̸⊢
crash

5.3 As argued in exercise 5.2, the PDA has two options in state q0: to
consider the current symbol as the middle one in an odd length palindrome,

1

or to make a Λ-move to q1. In addition, there is the option never to leave q0.
Consequently, for an input string of length n the PDA has 2n+ 1 different
(complete) computations.

5.4 a. The PDA accepts only even length palindromes once the possibilities
(in moves 1-6) to go from q0 to q1 while reading an a or a b have been
removed.
b. The PDA accepts only odd length palindromes once the possibilities
(moves 7-9) to go from q0 to q1 with a Λ-move have been removed.

5.6 a. This PDA accepts {axa, bxb | x ∈ {a, b}∗}.
b. The PDA accepts {xcy | x, y ∈ {a, b}∗ and |x| = |y|}.

5.9 In the figure below we have drawn the transition diagram of a PDA
for the language {xcxr | x ∈ {a, b}∗} of simple palindromes with two states
(compare with Table 5.6). It uses the stack symbol 0 to indicate that it is
reading the “first half” of the word (before the c) and that the a’s and b’s
have to be pushed onto the stack. Reading c pops the 0. Then for each
newly read a and b, the corresponding symbol has to be popped. The stack
symbols A and B are used only for the first a and b, respectively, and when
they are on top they indicate that the PDA should go to the accepting state
q2 while reading the last input a or b.

q0 q2

b, Z0/0BZ0

a, 0/0a
b, 0/0b
c, 0/Λ

b, b/Λ
a, a/Λ

b, B/Λ
a,A/Λ

c, Z0/Z0a, Z0/0AZ0

5.10 Let M0 = (Q,Σ, q0, A, δ) be an FA. From M0 we construct a DPDA
M with two states: p0 is the initial state; if q0 ∈ A, that is Λ ∈ L(M0), then
p0 is also the accepting state, otherwise p1 is the accepting state. The stack
alphabet of M is Q with q0 as the initial stack symbol.
The DPDA simulatesM0 as follows: the state on top of the stack corresponds
to the current state of M0. If M0 moves to a state r while reading an input
symbol a, also M reads a and it pushes r onto the stack while moving to

2

the accepting state if r ∈ A and to the non-accepting state if r ̸∈ A.
Note that M never removes a symbol from the stack, has no Λ-transitions,
and is deterministic (because M0 is deterministic).

5.18 For a. modified for the language {x|na(x) = nb(x)} and b. see the
diagram below. This DPDA has state q0 corresponding to the situation that
the same numbers of a’s and b’s have been read. In qa more a’s than b’s have
been read and, similarly, in qb, more b’s than a’s have been read. Thus for
the language {x ∈ {a, b}∗ | na(x) = nb(x)} choose q0 as the only accepting
state. For {x ∈ {a, b}∗ | na(x) ̸= nb(x)} let qa and qb be the accepting states.

a, Z0/Z0

a

b,+b
a, b/Λb

q0

b, Z0/Z0

a,+a
b, a/Λ

qb

qa

c. A DPDA for c is given in the book on page 406. Here we give the modified
version for {x ∈ {a, b}∗ | na(x) < 2nb(x)}.
Essentially every b that is read is treated as if it were two b’s, because the
number of a’s has to be compared to twice the number of b’s.
In q0, the stack contains only Z0 with zero or more a’s on top. For every
a read, an a is pushed; for every b first one a is popped and then in state
q2 it is checked whether still another a can be popped. If not, the state is
changed to q1. The DPDA goes from state q0 to state q1, if a b is read and
there are no a’s on the stack. Note that only one b is pushed onto the stack
now. In q1 for every b read, two b’s are pushed onto the stack and for every
a one b is popped or if there are no b’s anymore, the state changes to q0 and
the stack is not affected. Thus if the DPDA is in state q0 after having read
an input string w, the number of a’s on the stack is na(w)− 2nb(w) ≥ 0.
When the DPDA is in state q1 after reading a string w, with Z0 at the top of
the stack na(w) = 2nb(w)−1 and if b is at the top, then na(w) ≤ 2nb(w)−2.

3

a,+a b,+bb
a, b/Λ

b, Z0/bZ0

a, Z0/Z0

Λ, a/Λ

Λ, Z0/Z0

q1q0

b, a/Λ

q2

d. A DPDA for {anbn+mam | n,m ≥ 0}.

q1

b, a/Λ

q2

b, a/Λ

q6 q5

a, b/Λ
b, b/bb

a, Z0/aZ0

b, Z0/bZ0

a, a/aa

Λ, Z0/Z0

q0

b, Z0/bZ0

q3

q4

a, b/ΛΛ, Z0/Z0

The empty word is accepted in q0; in q1 a’s are pushed onto the stack; q2
is used to match b’s with the first series of a’s. If these are exhausted, the
DPDA can accept the input in q3. However more b’s may follow which are
pushed onto the stack and finally matched with a new series of a’s in q5.
When the stack thus has been emptied the input can be accepted in q6.

5.19 M1 and M2 are two PDAs specified by M1 = (Q1,Σ1,Γ1, q1, Z1, A1, δ1)
and M2 = (Q2,Σ2,Γ2, q2, Z2, A2, δ2). Without loss of generality we may
assume that Q1 ∩Q2 = ∅ and Γ1 ∩ Γ2 = ∅.
a. L(M1)∪L(M2) is accepted by the new PDA M = (Q1 ∪Q2 ∪ {q0},Σ1 ∪
Σ2,Γ1 ∪ Γ2 ∪ {Z0}, q0, Z0, A1 ∪ A2, δ0), where q0 is a new state, the inital
state of M , and Z0 is the new initial stack symbol. The transition function
δ0 of M is defined by
δ0(q, d,X) = δ1(q, d,X) if q ∈ Q1, d ∈ Σ1 ∪ {Λ}, and X ∈ Γ1;
δ0(q, d,X) = δ2(q, d,X) if q ∈ Q2, d ∈ Σ2 ∪ {Λ}, and X ∈ Γ2;
and δ0(q0,Λ, Z0) = {(q1, Z1), (q2, Z2)}.

4

Thus in M first a nondeterministic choice is made between M1 and M2

after which the automaton proceeds as the chosen one. Hence L(M) =
L(M1) ∪ L(M2).
b. L(M1)L(M2) is accepted by the new PDA M = (Q1 ∪ Q2 ∪ {q0},Σ1 ∪
Σ2,Γ1 ∪Γ2 ∪ {Z0}, q0, Z0, A2, δ0), where q0 is a new state, the inital state of
M , and Z0 is the new initial stack symbol. The transition function δ0 of M
is defined by
δ0(q, d,X) = δ1(q, d,X) if q ∈ Q1 −A1, d ∈ Σ1 ∪ {Λ}, and X ∈ Γ1;
δ0(q, a,X) = δ1(q, a,X) if q ∈ A1, a ∈ Σ1, and X ∈ Γ1;
δ0(q,Λ, X) = δ1(q,Λ, X) ∪ {(q2, Z2X)} if q ∈ A1 and X ∈ Γ1;
δ0(q, d,X) = δ2(q, d,X) if q ∈ Q2, d ∈ Σ2 ∪ {Λ}, and X ∈ Γ2;
and δ0(q0,Λ, Z0) = {(q1, Z1Z0)}.
Thus inM first Z1 is pushed on top of Z0 after which the automaton proceeds
as M1 until an original accepting state of M1 is reached. Then there is a
nondeterministic choice: either the computation proceeds as in M1 until
(again) an accepting state is reached, or the initial stack symbol of M2 is
pushed onto the current stack, the state becomes the initial state of M2 and
the computation proceeds as in M2. Note that when an accepting state of
M1 is reached, the stack will not be empty because M1 has no instructions
for Z0. Hence the computation will not crash at this point because of an
empty stack. It may be the case that the stack still has some stack symbols
from M1 when the computation has been switched to M2, but seeing such
symbol corresponds to an empty stack in the original M2 leading to a crash
unless an accepting state has been reached. Hence L(M) = L(M1)L(M2).
c. L(M1)

∗ is accepted by M = (Q1 ∪ {qf},Σ1,Γ1 ∪ {Z0}, qf , Z0, {qf}, δ0),
where qf is a new state, the inital and accepting state of M , and Z0 is the
new initial stack symbol. The transition function δ0 of M is defined by
δ0(q, d,X) = δ1(q, d,X) if q ∈ Q1 −A1, d ∈ Σ1 ∪ {Λ}, and X ∈ Γ1;
δ0(q, a,X) = δ1(q, a,X) if q ∈ A1, a ∈ Σ1, and X ∈ Γ1;
δ0(q,Λ, X) = δ1(q,Λ, X) ∪ {(qf , Z1X)} if q ∈ A1 and X ∈ Γ1;
and δ0(qf ,Λ, X) = {(q1, Z1X)} for all X ∈ Γ1 ∪ {Z0}.
Thus M begins its computations in qf . Since qf is also an accepting state
we have Λ ∈ L(M). In qf the stack symbol Z1 is pushed on top of the stack
and the computation proceeds as in M1 until an accepting state of M1 is
reached. Then a nondeterministic choice is made: either the computation
proceeds as in M1 or the state is changed in the accepting qf after which a
new computation of M1 may begin. Thus L(M) = {Λ}∪L(M1)

+ = L(M)∗.

5.20 Let L be the language accepted by the DPDA M . Then we can con-
struct a DPDA M ′ which accepts the language K = {x#y | x ∈ L and xy ∈

5

L} consisting of all words in L which have a prefix in L as marked now by
the new symbol #.
Without loss of generality we may assume that M has no Λ-transitions
pointing out from an accepting state (see the intermezzo at 7.16). M ′ con-
sists essentially of two distinct copies M ′′ and M ′′′ of M . The initial state
of M ′ is the state in the first copy M ′′ corresponding to the initial state of
M and the accepting states of M ′ are the states in the second copy M ′′′

corresponding to the accepting states of M . Computations start in M ′′ and
proceed as in M until # is encountered. If the current state corresponds
to an accepting state of M , then M ′ switches (deterministically, because
M and hence M ′′, has no Λ-transitions from final states) from M ′′ to M ′′′

where the computation is continued. Thus δ′(q′′,#, X) = (q′′′, X) whenever
q is an accepting state of M with copy q′′ in M ′′ and copy q′′′ in M ′′′.
Thus M ′ is a DPDA and a word is accepted by M ′ if and only if it is of the
form x#y with x ∈ L and xy ∈ L.

Note however that to prove this latter statement formally, one actually
needs the assumption that M is deterministic. Otherwise, there may be
words x, y such that x and xy belong to L(M), but the computation leading
to the acceptance of x cannot be prolonged to an accepting computation for
xy (which may have an accepting computation which doesn’t encounter an
accepting state after the prefix x). This is the answer to exercise 8.21: if
M is not deterministic, then we do have L(M ′) ⊆ K, but this inclusion may
be strict.

This result doesn’t hold for context-free languages in general: pal is a
context-free language, but K = {x#y | x, xy ∈ pal} is not a CFL.
This follows from the observation that if it were a CFL, then also L =
K∩{0}∗{1}∗{0}∗#{1}∗{0}∗ = {0i1j0i#1j0i | i, j ≥ 0}. (Because the family
of CFLs is closed under intersection with regular languages, Theorem 8.4.)
However it follows from the pumping lemma that L is not context-free.
Moreover: since L is not context-free, it is certainly not a DCFL. Thus K
is not a DCFL and hence pal is not a DCFL according to what we have
shown here in exercise 5.20. This is an alternative proof for Theorem 5.16.

5.21 First we establish some normal forms for (D)PDAs:
For every PDA M , there exists (effectively) a PDA M ′ such that
L(M) = L(M ′) and
1. M ′ never empties its stack
and/or
2. M ′ has no Λ-transitions from an accepting state.
Moreover M ′ is deterministic whenever M is.

6

Let M = (Q,Σ,Γ, q0, Z0, A, δ).
To guarantee property 1, we create a new initial state q0

′ ̸∈ Q and we
add a new (dummy) bottom symbol: F ̸∈ Γ together with a new move:
δ′(q0

′,Λ, Z0) = {(q0, Z0F)}. All other parameters of M remain unchanged.
Note that the resulting PDA never pops or pushes F after leaving the new
initial state (to which it never returns). It crashes due to lack of instructions
when F is the top of the stack if and only if M has an empty stack (and the
two automata are in the same state after having processed the same prefix of
the current input word). It follows that the newly constructed PDA accepts
the same language as M and that it is deterministic whenever M is.
To enforce property 2, we modify M in the following way. We introduce for
every a ∈ Σ, an a-indexed copy of each state: Qa = {ra | r ∈ Q}. Whenever
M has a Λ-transition from an accepting state we replace this by transitions
which guess what symbol (a ∈ Σ) will be read next:
for all p ∈ A, Z ∈ Γ, and a ∈ Σ, replace every (r, α) ∈ δ(p,Λ, Z) by (ra, α);
and move between (a-indexed) new states just like M (until an input sym-
bol, which has to be a, is read):
for all p ∈ Q, Z ∈ Γ, and a ∈ Σ,
add (qa, α) as a move from (ra,Λ, Z) whenever (q, α) ∈ δ(r,Λ, Z) and
add (q, α) as a move from (ra,Λ, Z) whenever (q, α) ∈ δ(r, a, Z).
This defines a new PDA M ′. By construction, M ′ satisfies property 2.
That L(M ′) = L(M) follows from the correspondence between the success-
ful computations of M and M ′ (without loss of generality we do not consider
successful computations which move from accepting state to accepting state
without ever reading a new input symbol). Again M ′ is deterministic when-
ever M is.
We conclude with the observation that the two constructions given above
are independent. Hence we can apply them one after the other to obtain a
(D)PDA satisfying both properties 1 and 2.

5.22 Let M = (Q,Σ,Γ, q0, Z0, A, δ) be a DPDA accepting the language L.
Let $ be a new symbol (not in the alphabet of L). Then we can construct
from M a new DPDA M ′ which accepts L{$} by empty stack as follows.
First, observe that, according to the intermezzo above, we may assume that
no computation of M ever leads to the stack being empty. Moreover, M
has no Λ-transitions leaving an accepting state. M ′ proceeds as M until
it reaches an accepting state q ∈ A. Then M ′ moves to the new state pe
provided it reads $: δ′(q, $, X) = (pe,Λ) for all q ∈ A and X ∈ Γ.
In pe the stack is emptied without reading any symbols anymore: δ′(pe,Λ, X) =
(pe,Λ) for all X ∈ Γ.

7

Note that M ′ is deterministic because M satisfies property 2. Furthermore,
the stack can only be emptied at pe which state can only be reached after
reading a $ following a word accepted by M . Conversely, for every w ∈ L,
we have w$ ∈ Le(M

′). Thus L{$} = L(M ′) is accepted by the DPDA M ′

by empty stack.

5.23 Let L be a language accepted by a DPDA M by empty stack. Thus
for every x ∈ L, the (unique) sequence of moves by M to accept x leaves
the stack empty. Consequently whenever x ∈ L there doesn’t exist any
z ̸= Λ such that xz ∈ L, because M is deterministic and cannot move after
accepting x.
This implies that no language L with x, y ∈ L such that x is a proper prefix
of y can be accepted by a DPDA by empty stack.

5.24 The property of pal used in the proof of Theorem 5.16 is that all
distinct words in {a, b}∗ are distinguishable with respect to pal:
For all x, y ∈ {a, b}∗, whenever x ̸= y there exists a z such that xz ∈ pal

and yz ̸∈ pal or vv.
To prove that the given languages cannot be accepted it is sufficient to
establish that they also have this property and apply the reasoning from the
proof of Theorem 5.16.
a. and b. Similar to the argument in Example 2.27.
c. L = {uv ∈ {0, 1}∗ | v = u!}. Here u! is the word obtained from u by
replacing 0’s by 1’s and 1’s by 0’s.
See d and try to adapt the proof given there.
d. L = {uv ∈ {0, 1}∗ | v = u or v = u!}.
Let x, y ∈ {0, 1}∗ with x ̸= y. If |x| = |y|, then consider z = 0x0. Clearly
x0x0 = xz ∈ L. However yz = y0x0 cannot be in L: since |x| = |y| we
know that x0 ̸= (y0)! and since in addition x ̸= y it is also not the case that
y0 = x0.
Now assume that |x| < |y| (the case |y| < |x| can be dealt with analogously).
First assume that |y| − |x| is odd. Let z = x. Then xz = xx ∈ L, but
yz = yx ̸∈ L, because |yx| = |y| + |x| = |y| − |x| + 2|x| is odd. Next
assume that |y| − |x| = 2k for some k ≥ 1. Thus y = wu1u2 with |w| = |x|
and |u1| = |u2| = k. Let z = u2u

!
2xu2u

!
2. Then xz = xu2u

!
2xu2u

!
2 ∈ L,

but yz = wu1u2u2u
!
2xu2u

!
2 is not in L: because yz consists of two halves

|wu1u2u2| = |u!2xu2u!2| ending differently with u2 and u!2 respectively; and it
cannot be of the form ww! because the two halves end with u2u2 and u2u

!
2

respectively.

5.25 A counter automaton is a PDA with next to the initial stack symbol

8

Z0 only one other stack symbol A. During a computation the stack contents
is always of the form AnZ0 where n ≥ 0. Thus, the automaton can only
“count”: push and pop A’s.
b. A counter automaton for L = {x{0, 1}∗ | n0(x) < 2n1(x)} compares the
number of 0’s read with the number of 1’s read under the assumption that
every 1 counts for two 0’s (see also exercise 7.13c).
For x ∈ {0, 1}∗ we use d(x) = 2n1(x) − n0(x) to indicate the difference
between two times the number of 1’s in x and the number of 0’s in x. The
automaton has 3 states: q0 corresponding to d(x) = 0, the initial state; q+
corresponding to d(x) > 0, the accepting state; and q− corresponding to
d(x) < 0. The number of A’s on the stack indicates the absolute value of
d(x). The state qa is an auxiliary state.
In q0 reading initially a 1 leads to pushing two A’s and a move to q+. Also
in q+ reading a 1 leads to pushing two A’s. When in q+ a 0 is read one A
is popped and the automaton moves temporarily to q0 where it is checked
whether or not there are still A’s on the stack (to avoid acceptance in case
d(x) = 0). If there are still A’s the automaton moves back to q+ with a
Λ-transition. Otherwise we are back in the initial situation.
In q0 reading initially a 0 leads to pushing an A and a move to q−. Also
in q− reading a 0 leads to pushing an A. When in q− a 1 is read one A is
popped (if possible) and the automaton moves temporarily to qa where it
is checked whether or not another A can be popped. If yes, the automaton
moves back to q− with a Λ-transition while popping the second A. If no,
then the automaton moves to q+ with a Λ-transition while pushing an A
(note that d(x) is now 1).
When in q− the stack no longer contains A’s the automaton moves with a
Λ-transition back to the inital situation (d(x) = 0).

9

1, Z0/AAZ0

q+0, A/Λ

0, Z0/AZ0

0, A/AA
1, A/Λ

1, A/AAAΛ, A/A

q− qa

Λ, Z0/AZ0Λ, Z0/Z0

Λ, A/Λ

q0

Note that this PDA (counter automaton) is deterministic.

5.26 Let M be a DPDA over some input alphabet Σ. Consider a word
y ∈ Σ∗ − L(M) and suppose that M has not read the last letter of y (note
that since M is deterministic, it has only one computation for y). Then,
before it can read this last letter M either crashes (case 1) or it enters
an infinite loop of Λ-transitions (case 2). Note that case 2 can be easily
translated into case 1 by adding a “garbage” state g with the “missing”
instructions now added and leading to g. State g has only Λ-transitions
pointing back to it (one for each stack symbol).

Apply this construction to the DPDA of Example 5.11 (accepting bal-
anced strings of brackets), see Table 5.12. One of the strings on which it
crashes is }.

5.28 b. Given is the CFG with productions S → S + S |S ∗ S | (S) | a.
This grammar generates the string x = (a ∗ a + a). We consider the top-
down PDA constructed from the grammar as in Definition 7.4 and trace a
sequence of steps by which x is accepted together with the corresponding
leftmost derivation.

10

state string stack step

q0 (a ∗ a+ a) Z0

q1 (a ∗ a+ a) SZ0 S
q1 (a ∗ a+ a) (S)Z0 ⇒ (S)
q1 a ∗ a+ a) S)Z0

q1 a ∗ a+ a) S + S)Z0 ⇒ (S + S)
q1 a ∗ a+ a) S ∗ S + S)Z0 ⇒ (S ∗ S + S)
q1 a ∗ a+ a) a ∗ S + S)Z0 ⇒ (a ∗ S + S)
q1 ∗a+ a) ∗S + S)Z0

q1 a+ a) S + S)Z0

q1 a+ a) a+ S)Z0 ⇒ (a ∗ a+ S)
q1 +a) ,+S)Z0

q1 a) S)Z0

q1 a) a)Z0 ⇒ (a ∗ a+ a)
q1))Z0

q1 Λ Z0

q2 Λ Z0

5.32 Consider the PDA M from Example 5.7 with move 12 δ(q1,Λ, Z0) =
{(q2, Z0)} changed into δ(q1,Λ, Z0) = {(q2,Λ)}.

state string stack step

q0 ababa Z0 S ⇒ [q0, Z0, q2]
q0 baba aZ0 ⇒ a[q0, a, q1][q1, Z0, q2]
q0 aba baZ0 ⇒ ab[q0, b, q1][q1, a, q1][q1, Z0, q2]
q1 ba baZ0 ⇒ aba[q1, b, q1][q1, a, q1][q1, Z0, q2]
q1 a aZ0 ⇒ abab[q1, a, q1][q1, Z0, q2]
q1 Λ Z0 ⇒ ababa[q1, Z0, q2]
q2 Λ Λ ⇒ ababa

This PDA accepts the same language L = L(M) but now by empty stack
and so we can apply Theorem 5.29: we consider the CFG as constructed
there with L(G) = L.
For x = ababa the table shows a sequence of steps in the new PDA by which
x is accepted together with the corresponding leftmost derivation in G.

5.34 a. Given is the CFG with productions S → [S]S |Λ. This grammar
generates the string x = [][[]]. We consider the bottom-up PDA constructed

11

from the grammar as in Example 5.24 and trace a sequence of steps by which
x is accepted together with the corresponding rightmost derivation of x in
the grammar in reverse order.

move state string stack step

q [][[]] Z0

reduce q [][[]] SZ0 ⇒ [][[]]
shift q][[]] [SZ0

reduce q][[]] S[SZ0 ⇒ S[][[]]
shift q [[]]]S[SZ0

reduce q1,1 [[]] S[SZ0 ⇒ S[S][[]]
q1,2 [[]] [SZ0

q1,3 [[]] SZ0

q [[]] SZ0

shift q []] [SZ0

reduce q []] S[SZ0 ⇒ S[[]]
shift q]] [S[SZ0

reduce q]] S[S[SZ0 ⇒ S[S[]]
shift q]]S[S[SZ0

reduce q1,1] S[S[SZ0 ⇒ S[S[S]]
q1,2] [S[SZ0

q1,3] S[SZ0

q] S[SZ0

shift q Λ]S[SZ0

reduce q1,1 Λ S[SZ0 S ⇒ S[S]
q1,2 Λ [SZ0

q1,3 Λ SZ0

q Λ SZ0

(pop S) q1 Λ Z0

(accept) q2 Λ Z0

5.36 Let M be a PDA (accepting with empty stack) and consider the CFG
G obtained from M as in the proof of Theorem 5.29. Since every accept-
ing computation of M determines a unique leftmost derivation of a word in
L(G), it follows that G is unambiguous if M is deterministic.
However if G is unambiguous it is not necessarily the case that M is deter-
ministic. It is sufficient if M never has more than one accepting computation
per word.

12

5.38 Each of the given grammars satisfies the LL(1) property: looking one
symbol ahead in the input is sufficient to choose (deterministically) the next
move of its associated push-down parser. Thus we can obtain for each a
deterministic PDA:
a. Consider the CFG G given by the productions:
S → S1$, S1 → AS1 |Λ, A → aA | b.
The top-down PDA associated withG (Definition 7.4) is given below through
its transition diagram.

q2q0 q1

Λ, Z0/SZ0 Λ, Z0/Z0

Λ, S/S1$
b, b/Λ
a, a/Λ
$, $/Λ

Λ, A/aA; Λ, A/b
Λ, S1/AS1; Λ, S1/Λ

This PDA is non-deterministic as a consequence of a choice in productions
when rewriting S1 or A.
G is LL(1): The lookahead for S1 → AS1 is {a, b} and for S1 → Λ it is {$};
thus the two productions have disjoint lookaheads;
also, the lookahead for A → aA is {a} and for A → b it is {b}.
Note that the lookahead for S → S1$ is {a, b, $}.
From this PDA (or rather from the grammar) we can now construct a de-
terministic PDA by incorporating the lookahead.

The most systematic (preferred) way is to introduce a separate state for
each terminal symbol (input symbol to the PDA). As long as the top of the
stack is not Z0, the PDA has to read in q1 first a new input symbol; it then
moves to the corresponding state where it applies productions which have
that symbol in their lookahead until that terminal symbol is produced (on
top of the stack); then it moves back to q1 while popping the terminal. See
Figure 1, below. The thus obtained PDA is clearly deterministic.
Note that this parser is actually directly constructed from the grammar!

Alternatively, one could also (more opportunistically) repair only the
non-determinism where it actually occurs (see Figure 2):
Again separate states for terminal symbols are introduced. Whenever the
top of the stack is a non-terminal with more than one production, the PDA
has to read an input symbol which then determines what production is to
be applied. The PDA moves to the corresponding state where it applies

13

productions which have that symbol in their lookahead until it appears on
top of the stack; then it moves back to q1 while popping the terminal.

q2q0

Λ, Z0/SZ0 Λ, Z0/Z0

Λ, $/Λ

Λ, S/S1$
Λ, S1/Λ

Λ, S/S1$
Λ, S1/AS1

Λ, A/b

$, X/X

q$

qa

Λ, S/S1$
Λ, S1/AS1

a,X/X b,X/X

Λ, a/Λ
Λ, b/Λ

qb

q1

Λ, A/aA

X ̸= Z0

Figure 1

q2q0

Λ, Z0/SZ0 Λ, Z0/Z0
q1

Λ, $/Λ
Λ, b/ΛΛ, a/Λ

Λ, S/S1$
b, b/Λ
a, a/Λ
$, $/Λ

a, S1/AS1

b, A/b
b, S1/AS1

$, S1/Λ

qa q$ qb

Λ, S/S1$ Λ, S/S1$ Λ, S/S1$
Λ, S1/AS1

Λ, A/aA
Λ, S1/Λ Λ, S1/AS1

Λ, A/b

a,A/aA

Figure 2

It is possible that the DPDAs have superfluous transitions which could be
removed.
b. Consider the CFG G given by the productions:
S → S1$, S1 → aA, A → aA | bA |Λ.
Lookaheads:
LA1(S → S1$) = {a}

14

LA1(S1 → aA$) = {a}
LA1(A → aA) = {a} LA1(A → bA) = {b} LA1(A → Λ) = {$}.
(Note that G is LL(1).)
The deterministic pushdown parser we give below has initial state q0, “in-
termediate” state q1, accepting state q2, and three “input lookahead” states
qa, qb, and q$. The transition table, derived from the productions and their
lookahead, follows next. Symbol X denotes an arbitrary stack symbol which
is not Z0.

state input stack symbol move

q0 Λ Z0 (q1, SZ0)
q1 Λ Z0 (q2, Z0)

q1 a X (qa, X)
q1 b X (qb, X)
q1 $ X (q$, X)

qa Λ a (q1,Λ)
qb Λ b (q1,Λ)
q$ Λ $ (q1,Λ)

qa Λ S (q1, S1$)
qa Λ S1 (q1, aA)
qa Λ A (q1, aA)
qb Λ A (q1, bA)
q$ Λ A (q1,Λ)

c. Consider the CFG G given by the productions:
S → S1$, S1 → aAb | bBa, A → bS1 | a, B → aS1 | b.
Lookaheads:
LA1(S → S1$) = {a, b}
LA1(S1 → aAb$) = {a} LA1(S1 → bBa$) = {b}
LA1(A → bS1) = {b} LA1(A → a) = {a}
LA1(B → aS1) = {a} LA1(B → b) = {b}.
(Note that G is LL(1).)
The deterministic pushdown parser we give below has initial state q0, “in-
termediate” state q1, accepting state q2, and three “input lookahead” states
qa, qb, and $. (Note that $ is not a lookahead symbol of the grammar.) The
transition table, derived from the productions and their lookahead, follows
next. Symbol X denotes an arbitrary stack symbol which is not Z0.

15

state input stack symbol move

q0 Λ Z0 (q1, SZ0)
q1 Λ Z0 (q2, Z0)

q1 a X (qa, X)
q1 b X (qb, X)
q1 $ X (q$, X)

qa Λ a (q1,Λ)
qb Λ b (q1,Λ)
q$ Λ $ (q1,Λ)

qa Λ S (q1, S1$)
qa Λ S1 (q1, aAb)
qa Λ A (q1, a)
qa Λ B (q1, aS1)
qb Λ S (q1, S1$)
qb Λ S1 (q1, bBa)
qb Λ A (q1, bS1)
qb Λ B (q1, b)

5.41 a. Consider the CFG given by: S → S1$, S1 → aaS1b | ab | bb.
This grammar is not LL(1): a is a lookahead symbol both for S1 → aaS1b
and S1 → ab. We factor the righthand sides of these two productions:
S1 → aX, X → aS1b | b.
Thus the modified grammar is given by the productions:
S → S1$, S1 → aX | bb X → aS1b | b.
This grammar is LL(1): different productions of the same nonterminal have
different lookahead symbols.
b. Consider the CFG given by: S → S1$, S1 → S1A |Λ, A → Aa | b.
This grammar is not LL(1) because of the left-recursion in the productions
S1 → S1A and A → Aa.
Replace S1 → S1A |Λ by S1 → ΛX and X → AX |Λ and note that S1 and
X can be identified; thus we obtain S1 → AS1 |Λ.
Replace A → Aa | b by A → bY and Y → aY |Λ;
Thus the modified grammar is given by the productions:
S → S1$, S1 → AS1 |Λ, A → bY , Y → aY |Λ.
It is easy to see that this grammar is LL(1):
Lookahead for S1 → AS1 is {b}; for S1 → Λ it is {$}, thus no common
symbols; also the lookahead for Y → aY which is {a} and the lookahead for

16

Y → Λ which is {$, b} have no symbols in common.
Variant of 5.41b by Rudy van Vliet
Consider the context-free grammar with productions:
S → S1$ S1 → S1A | a |Λ A → Aa | b
This context-free grammar does not satisfy the LL(1) property due to left
recursion in the productions for S1 leading to common lookahead symbols:
LA1(S1 → a) = {a} LA1(S1 → S1A) = {a, b} LA1(S1 → Λ) = {$, b}.
And similarly for A: LA1(A → b) = {b} LA1(A → Aa) = {b}.
We eliminate the left recursion using new non-terminal symbols U and W :
S1 → aU |U U → Λ |AU and A → bW W → Λ | aW
The productions of the resulting context-free grammar are
S → S1$ S1 → aU |U U → Λ |AU A → bW W → Λ | aW
This grammar is LL(1):
LA1(S1 → aU) = {a} LA1(S1 → U) = {b, $}
LA1(U → AU) = {b} LA1(U → Λ) = {$}
LA1(W → aW) = {a} LA1(W → Λ) = {b, $}
c. Consider the CFG given by: S → S1$, S1 → S1T | ab, T → aTbb | ab.
After removing the left-recursion in the production S1 → S1T and the fac-
toring of T → aTbb and T → ab, the following grammar results:
S → S1$, S1 → abX, X → TX |Λ, T → aY , Y → Tbb | b.
This grammar is LL(1):
Lookahead for X → TX is {a}; for X → Λ it is {$}.
Lookahead for Y → Tbb is {a}; for Y → b it is {b}.
d. Consider the CFG given by:
S → S1$, S1 → aAb | aAA | aB | bbA, A → aAb | ab, B → bBa | ba.
After factoring the following CFG results:
S → S1$, S1 → aX | bbA, X → AY |B, Y → b |A,
A → aZ, Z → Ab | b, B → bU , U → Ba | a.
This grammar is LL(1):
Lookahead for S1 → aX is {a}; for S1 → bbA it is {b}.
Lookahead for X → AY is {a}; for X → B it is {b}.
etc. DIY

5.42 Consider the following modification of the CFG from exercise 5.41c:
S → S1$, S1 → S1T | ab, T → aTbb | a.
After factoring and eliminating left-recursion we obtain:
S → S1$, S1 → abX, X → TX |Λ, T → aY , Y → Tbb |Λ.
This grammar however is not LL(1): Lookahead for Y → Tbb is {a} while
the lookahead for Y → Λ is {a, b, $}. Thus these two productions of Y have
a as a common lookahead symbol. Note that the lookahead for X → TX is

17

{a} and for X → Λ it is {b, $}.
The string abaabbaa$ is an example where indeed parsing with a lookahead
of one symbol cannot be done deterministically as demonstrated by the
following leftmost derivation:
S ⇒ S1$ ⇒ abX$ ⇒ abTX$ lookahead a: X → TX
⇒ abaY X$ ⇒ abaTbbX lookahead a, we choose Y → Tbb
⇒ abaaY bbX$ ⇒ abaabbX$ ⇒ abaabbTX$
. lookahead b: Y → Λ; lookahead a: X → TX
⇒ abaabbaY X$ ⇒ abaabbaX$ ⇒ abaabbaTX$
. lookahead a, now we choose Y → Λ; lookahead a: X → TX
⇒ abaabbaaY X$ ⇒ abaabbaaX$ ⇒ abaabbaa$
. lookahead $: Y → Λ; lookahead $: X → Λ.
Note that the points where we are forced to choose in the above derivation
correspond to non-determinism in a “parser”.

5.43 Consider the CFG given by: S → S1$,
S1 → S1 + T |T , T → T ∗ F |F , F → (S1) | a.
a. After eliminating left-recursion we obtain: S → S1$,
S1 → TX, X → +TX |Λ, T → FY , Y → ∗FY |Λ, F → (S1) | a.
b. The new CFG in a is LL(1):
lookahead for X → +TX is {+} and for X → Λ it is {), $};
lookahead for Y → ∗FY is {∗} and for Y → Λ it is {+,), $};
lookahead for F → (S1) is {(} and for F → a it is {a}.
See exercise 5.38 for an explanation on how to obtain a DPDA (top-down
parser) from this grammar.

version 31 October 2011

18

