Fundamentele Informatica II

Answer to selected exercises 3

John C Martin: Introduction to Languages and the Theory of Computation

M.M. Bonsangue (and J. Kleijn)

Fall 2011

3.1 a. $r = b^*(ab)^*a^*$: the word *aab* is not in the language, defined by r, since every *a* should be followed by a *b* or belong to a suffix of *a*'s. Note that Λ , *a*, *b*, and all words of length 2 are in the language, defined by *r*. So, *aab* is of minimal length.

Another example is abb: every b should be preceded by a a unless it is part of a prefix of b's.

b. $r = (a^* + b^*)(a^* + b^*)$: the words *abab* and *baba* are examples of words not belonging to the language defined by r, because r allows only a maximum of two a-b or b-a changes in a word when reading it from left to right. Verify that there are no shorter words (i.e. of length ≤ 3) not belonging to the language of r.

c. $r = a^*(baa^*)^*b^*$: the word *bba* does not belong to the language defined by r, because every occurrence of b should be followed by at least one a unles it belongs to a suffix of b's. Verify that all words of length ≤ 2 belong to the language.

d. $r = b^*(a + ba)^*b^*$: the word *abba* does not belong to the language of r, because that requires that a b can only be followed by a b if it belongs to a prefix or suffix consisting of b's. Verify that all words of length ≤ 3 belong to the language.

3.3 a. $r(r^*r + r^*) + r^* = r^*$.

 $\mathbf{b.} \ (r+\Lambda)^* = r^*.$

c. The expression $(r + s)^* rs(r + s)^* + s^*r^*$ denotes all words that contains at least once rs (i.e. the expression $(r + s)^*rs(r + s)^*$) or do not contains any occurrence of rs at all (i.e. the expression s^*r^*). This is thus equivalent to $(r + s)^*$.

extra 1 The expression $(r(r+s)^*)^+$ can be simplified in $r(r+s)^*$

3.6 a. $(w)^*(z)^*$ **b.** $(w)^*a(w+z)^*$ **c.** $(w+z)^*(a+\Lambda)$

3.7 a. $b^*ab^*ab^*$

 $\begin{array}{l} \mathbf{b.} \ (a+b)^*ab^*ab^* \\ \mathbf{c.} \ \Lambda+b+(a+b)^*a+(a+b)^*bb \\ \mathbf{e.} \ (b+ab)^*(\Lambda+a) \ \mathrm{and} \ (\Lambda+a)(b+ba)^* \\ \mathbf{f.} \ b^*(ab^*ab^*)^* \\ \mathbf{g.} \ (b+ab)^*(\Lambda+a+aa)(b+ba)^* \\ \mathbf{h.} \ b^*(abbb^*)^* \\ \mathbf{k.} \ (a+ba)^*b^*. \\ \mathbf{l.} \ (a+b)^*(bab+aba)(a+b)^*. \\ \mathbf{m.} \ ((aa+ab(bb)^*ba)*(b+ab(bb)^*a)(a(bb)^*a)*(b+a(bb)^*ba))^*(aa+ab(bb)^*ba)^*(b+ab(bb)^*a)^*. \\ \mathbf{m.} \ ((aa+bb)^*(ab+ba)(ab+aa)^*(ba+ab))^*(aa+bb)^*(ab+ba)(bb+aa)^*. \\ \mathbf{m.} \ ((aa+bb)^*(ab+ba)(bb+aa)^*(ba+ab))^*(aa+bb)^*(ab+ba)(bb+aa)^*. \end{array}$

3.10 The reverse function **rev** assigns to each string its reversal (mirror image).

Formally, given an alphabet Σ , we define $\mathbf{rev}: \Sigma^* \to \Sigma^*$ recursively by: $\mathbf{rev}(\Lambda) = \Lambda$ (no change)

 $\operatorname{rev}(xa) = \operatorname{arev}(x)$ for $x \in \Sigma^*$, $a \in \Sigma$ (last letter first, reverse the rest) $\operatorname{rev}(x)$ may be abbreviated as x^r .

For a language L we use L^r to denote the language consisting of the reversals of the words from L, thus $L^r = \{x^r \mid x \in L\}$.

a. Consider the regular expression $e = (aab + bbaba)^*baba$ defining the regular language ||e||. Then the language $||e||^r$ can be defined by the regular expression $e_r = abab(baa + ababb)^*$; thus $||e_r|| = ||e||^r$.

b. In general we have the recursively defined function **rrev** which "reverses" regular expressions (in the sense that it yields a regular expression with a reversed semantics): $rrev(\emptyset) = \emptyset$; $rrev(\Lambda) = \Lambda$; rrev(a) = a for all $a \in \Sigma$. and for the composite elements:

if e_1 and e_2 are regular expressions, then $\operatorname{rrev}(e_1+e_2) = \operatorname{rrev}(e_1) + \operatorname{rrev}(e_2)$; $\operatorname{rrev}(e_1e_2) = \operatorname{rrev}(e_2)\operatorname{rrev}(e_1)$; and $\operatorname{rrev}(e_1^*) = (\operatorname{rrev}(e_1))^*$.

Now we have to prove that this **rrev** has the property $||\mathbf{rrev}(e)|| = ||e||^r$. This is proved by induction on the structure of e:

 $e = \emptyset$: then $||\mathbf{rrev}(\emptyset)|| = ||\emptyset|| = ||\emptyset||^r$;

 $e = \Lambda$: then $||\mathbf{rrev}(\Lambda)|| = ||\Lambda|| = ||\Lambda||^r$;

e = a: then $||\mathbf{rrev}(a)|| = ||a|| = ||a||^r$.

Induction step, assuming that $||\mathbf{rrev}(e_1)|| = ||e_1||^r$ and $||\mathbf{rrev}(e_2)|| = ||e_2||^r$:

$$\begin{split} e &= e_1 + e_2: \text{ then } \\ ||\mathbf{rrev}(e_1 + e_2)|| &= ||\mathbf{rrev}(e_1) + \mathbf{rrev}(e_2)|| = ||\mathbf{rrev}(e_1)|| \cup ||\mathbf{rrev}(e_2)|| = \\ (\text{induction}) \ ||(e_1)||^r \cup ||(e_2)||^r = (||e_1|| \cup ||e_2||)^r = ||e_1 + e_2||^r; \\ e &= e_1e_2: \text{ then } \\ ||\mathbf{rrev}(e_1e_2)|| &= ||\mathbf{rrev}(e_2)\mathbf{rrev}(e_1)|| = ||\mathbf{rrev}(e_2)|| \cdot ||\mathbf{rrev}(e_1)|| = \\ (\text{induction}) \ ||(e_2)||^r||(e_1)||^r = (||(e_1)|| \cdot ||(e_2)|)|^r = ||e_1e_2||^r; \\ e &= e_1^*: \text{ then } \\ ||\mathbf{rrev}(e_1^*)|| &= ||(\mathbf{rrev}(e_1))^*|| = ||\mathbf{rrev}(e_1)||^* = \\ (\text{induction}) \ (||e_1||^r)^* = (||e_1||^*)^r = ||e_1^*||^r. \\ \mathbf{c. It follows from b. that the language } L^r \text{ is regular whenever the language} \end{split}$$

L is regular: we have seen that L = ||e|| implies that $L^r = ||\mathbf{rrev}(e)||$ and that $\mathbf{rrev}(e)$ is a regular expression follows immediately from the definition of \mathbf{rrev} as given above.

3.18 See Figure 3.34.

a. We determine $\delta^*(1, aba)$. First observe that $\delta^*(1, \Lambda) = \Lambda(\{1\}) = \{1\}$; then $\delta^*(1, a) = \Lambda(\bigcup_{r \in \delta^*(1, \Lambda)} \delta(r, a) = \Lambda(\delta(1, a)) = \Lambda(\{2\}) = \{2, 3\}$. This means that processing symbol *a* from the initial state leads to state 2 or state 3.

We add b: $\delta^*(1, ab) = \Lambda(\delta(2, b) \cup \delta(3, b)) = \Lambda(\emptyset \cup \{3, 4\}) = \{3, 4, 5\}$ and so after ab we are in either state 3 or state 4 or state 5.

Finally we process another $a: \delta^*(1, aba) = \Lambda(\delta(3, a) \cup \delta(4, a) \cup \delta(5, a)) = \Lambda(\{4\} \cup \{4\} \cup \emptyset) = \Lambda(\{4\}) = \{4, 5\}$. Thus after reading aba we are in state 4 or in state 5 and since 5 is an accepting state, aba is accepted by M.

b. *abab* is not accepted: from **a.** we know that $\delta^*(1, aba) = \{4, 5\}$. Thus $\delta^*(1, abab) = \Lambda(\delta(4, b) \cup \delta(5, b)) = \Lambda(\emptyset) = \emptyset$. Not only is there no accepting state for *abab*, it cannot even be completely processed!

c. aaabbb is accepted by M (check!).

3.21: as in 3.18.

3.22

a. $\Lambda(\{2,3\}) = \{2,3,5\}.$ **b.** $\Lambda(\{1\}) = \{1,2,5\}.$ **d.** To determine $\delta^*(1,ba) = \text{first observe that } \delta^*(1,\Lambda) = \Lambda(\{1\}) = \{1,2,5\}$ (see above item b.). We thus have $\delta^*(1,b) = \Lambda(\bigcup_{p \in \delta^*(1,\Lambda)} \delta(p,b)) = \Lambda(\delta(1,b) \cup \delta(2,b) \cup \delta(5,b)) = \Lambda(\{6,7\}) = \{1,2,5,6,7\}.$ Finally we obtain $\delta^*(1,ba) = \Lambda(\bigcup_{p \in \delta^*(1,b)} \delta(p,a)) = \Lambda(\delta(1,a) \cup \delta(2,a) \cup \delta(5,a) \cup \delta(6,a) \cup \delta(7,a)) = \Lambda(\{3,5\}) = \{3,5\}.$

3.37 See Figure 3.36. Use the algorithm from the proof of Theorem 3.17

to obtain for each NFA an NFA without - Λ transitions accepting the same language.

a. In the table below, the first four columns describe the transition function of M. Its initial state is 1 and it has one final state: 4. As a useful extra we then compute $\Lambda(\{q\})$, the set consisting of all states that can be reached from q using only Λ -transitions. Next we compute the transitions of M', for each state q and symbol $c \in \{a, b\}$, using the formula $\delta'(q, c) = \delta^*(q, c) = \Lambda(\bigcup_{r \in \Lambda(q)} \delta(r, a))$.

Now we have the transitions of M' in the last two columns. Its initial state is again 1. As accepting states it has now 4 (just like M), but also the initial state 1, since $\Lambda(1) \cap \{4\} = \{4\} \neq \emptyset$!!!

q	$\delta(q,\Lambda)$	$\delta(q,a)$	$\delta(q,b)$	$ \Lambda(\{q\})$	$\delta^*(q,a)$	$\delta^*(q,b)$
1	$ \begin{array}{c} \{4\} \\ \emptyset \\ \emptyset \\ \emptyset \\ \emptyset \\ \emptyset \\ \emptyset \end{array} $	Ø	$\{2, 3\}$	$ \{1,4\}$	Ø	$\{2, 3, 5\}$
2	Ø	$\{3\}$	Ø	$\{2\}$	$\{3\}$	Ø
3	Ø	Ø	Ø	{3}	Ø	Ø
4	Ø	Ø	$\{5\}$	{4}	Ø	$\{5\}$
5	Ø	$\{4\}$	Ø	$\{5\}$	$\{4\}$	Ø

Draw M'.

3.41 a. We use the partial derivatives method to compute the transitions and the states of the *nondeterministic automaton* corresponding to the regular expression $E_0 = (b + bba)^*a$. First we note that $\Lambda \notin L(E_0)$, so E_0 is not an accepting state. We have $\partial_a((b + bba)^*a) = \partial_a((b + bba)^*)a \cup \partial_a(a) =$ $\partial_a((b + bba))(b + bba)^*a \cup \{\Lambda\} = (\partial_a(b) \cup \partial_a(bba))(b + bba)^*a \cup \{\Lambda\} = \{\Lambda\}$. This is a new state, clearly accepting, that we denote by E_1 . Continuing our calculation we obtain $\partial_b((b + bba)^*a) = \partial_b((b + bba)^*)a \cup \partial_b(a) = \partial_b((b + bba))(b + bba)^*a \cup \emptyset = (\partial_b(b) \cup \partial_b(bba))(b + bba)^*a = (\{\Lambda\} \cup \{ba\}(b + bba)^*a =$ $\{(b + bba)^*a, ba(b + bba)^*a\}$. The first element in the set is E_0 , and we denote the other one by E_2 . Also here $\Lambda \notin L(E_2)$.

The transitions from $E_1 = \Lambda$ are calculated as follows: $\partial_a(\lambda) = \partial_b(\lambda) = \emptyset$.

The transitions from $E_2 = ba(b + bba)^*a$ are: $\partial_a(ba(b + bba)^*a) = \partial_a(b)a(b + bba)^*a = \emptyset$. and $\partial_b(ba(b + bba)^*a) = \partial_b(b)a(b + bba)^*a = \{\Lambda\}a(b + bba)^*a = \{a(b + bba)^*a\}$. The element of this set is a new state, say E_3 , with $\Lambda \notin (E_3)$, thus non accepting.

The transitions from $E_3 = a(b+bba)^*a$ are: $\partial_a(a(b+bba)^*a) = \partial_a(a)(b+bba)^*a = \{\lambda\}(b+bba)^*a = \{(b+bba)^*a\}$. (this is just E_0) and $\partial_b(a(b+bba)^*a) = \partial_b(a)(b+bba)^*a = \emptyset a(b+bba)^*a = \emptyset$.

The resulting automaton (with E_0 as initial state) is summarized in the following table:

q	$\delta(q,a)$	$\delta(q,b)$	Accepting?
E_0	$\{E_1\}$	$\{E_0, E_2\}$	No
E_0 E_1	Ø	Ø	Yes
E_2	Ø	$\{E_3\}$	No
E_3	$\{E_0\}$	Ø	No

3.41 d. Let $E_0 = (a^*bb)^* + bb^*a^*$. We use the method of derivatives to find a deterministic finite automaton M accepting the language $L(E_0)$. Since $\Lambda \in L(E_0)$, the state E_0 is accepting. Further we calculate the two derivatives: $D_a((a^*bb)^* + bb^*a^*) = D_a((a^*bb)^*) + D_a(bb^*a^*) = D_a(a^*bb)(a^*bb)^* + D_a(b)b^*a^* = (D_a(a^*)bb + D_a(bb))(a^*bb)^* + \emptyset b^*a^* = (D_a(a)a^*bb + D_a(b)b)(a^*bb)^* + \emptyset$ $\emptyset = (a^*bb + \emptyset)(a^*bb)^* = (a^*bb)(a^*bb)^* = E_1$ and $D_b((a^*bb)^* + bb^*a^*) = D_b((a^*bb)^*) + D_b(bb^*a^*) = D_b(a^*bb)(a^*bb)^* + D_b(b)b^*a^* = (D_b(a)a^*bb + D_b(b)b)(a^*bb)^* + b^*a^* = (\emptyset + b)(a^*bb)^* + b^*a^* = b(a^*bb)^* + b^*a^* = E_2$ Note that Λ is in the language of E_2 but not in the languages of E_1 . Thus only E_2 is accepting.

Next we calculate the derivatives of E_1 . $D_a(a^*bb(a^*bb)^*) = D_a(a^*)bb(a^*bb)^* + D_a(bb(a^*bb)^*) = a^*bb(a^*bb)^* + \emptyset = a^*bb(a^*bb)^* = E_1$ and $D_b(a^*bb(a^*bb)^*) = D_b(a^*)bb(a^*bb)^* + D_b(bb(a^*bb)^*) = \emptyset + b(a^*bb)^* = b(a^*bb)^* = E_3$. Also E_3 is not accepting.

Next we calculate the derivatives of E_2 . $D_a(b(a^*bb)^*+b^*a^*) = D_a(b(a^*bb)^*) + D_a(b^*a^*) = D_a(b)(a^*bb)^* + D_a(b^*)a^* + D_a(a^*) = \emptyset + \emptyset + a^* = a^* = E_4$ (an accepting state!). Further $D_b(b(a^*bb)^* + b^*a^*) = D_b(b(a^*bb)^*) + D_b(b^*a^*) = D_b(b)(a^*bb)^* + D_b(b^*)a^* + D_b(a^*) = (a^*bb)^* + b^*a^* + \emptyset = (a^*bb)^* + b^*a^* = E_5$ (again, an accepting state!).

The derivatives of E_3 are: $D_a(b(a^*bb)^*) = D_a(b)(a^*bb)^* = \emptyset = E_6$ and $D_b(b(a^*bb)^*) = D_b(b)(a^*bb)^* = (a^*bb)^* = E_7$ (an accepting state).

The derivatives of E_5 are $D_a((a^*bb)^* + b^*a^*) = D_a((a^*bb)^*) + D_a(b^*a^*) = D_a(a^*bb)(a^*bb)^* + D_a(b^*)a^* + D_a(a^*) = a^*bb(a^*bb)^* + \emptyset + a^* = a^*bb(a^*bb)^* + a^* = E_8$ (an accepting state) and $D_b((a^*bb)^* + b^*a^*) = D_b((a^*bb)^*) + D_b(b^*a^*) = D_b(a^*bb)(a^*bb)^* + D_b(b^*)a^* + D_b(a^*) = D_b(bb)(a^*bb)^* + b^*a^* + \emptyset = b(a^*bb)^* + b^*a^* = E_2.$

We skip the calculation of the derivatives of the other states, which are either easy or can be derived by the above calculations. The resulting automaton (with E_0 as initial state) is summarized in the following table:

q	RegExp	$\delta(q,a)$	$\delta(q,b)$	Accepting?
E_0	$(a^*bb)^* + bb^*a^*$	E_1	E_2	Yes
E_1	$(a^*bb)(a^*bb)^*$	E_1	E_3	No
E_2	$b(a^*bb)^* + b^*a^*$	E_4	E_5	Yes
E_3	$b(a^*bb)^*$	E_6	E_7	No
E_4	a^*	E_4	E_6	Yes
E_5	$(a^*bb)^* + b^*a^*$	E_8	E_2	Yes
E_6	Ø	E_6	E_6	No
E_7	$(a^*bb)^*$	E_1	E_3	Yes
E_8	$(a^*bb)(a^*bb)^* + a^*$	E_8	E_3	Yes

3.44 a. We add a new initial state $q_i \notin Q$ and a Λ -transition $\delta(q_i, \Lambda) = \{q_0\}$. All the rest remains unchanged.

b. We add a new single accepting state $q_f \notin Q$ and a Λ -transition $\delta(q, \Lambda) = \{q_f\}$ from every $q \in A$. All the rest remains unchanged.

3.46 The construction proposed does not work: take two automata $M_1 = (\{q_1\}, \{a, b\}, q_1, \{q_1\}, \delta_1)$ and $M_2 = (\{q_2\}, \{a, b\}, q_2, \{q_2\}, \delta_2)$, with $\delta_1(q_1, a) = \{q_1\}$, and $\delta_2(q_2, a) = \{q_2\}$. Then $L(M_1) = \{a^n | n \ge 0\}$ and $L(M_2) = \{b^n | n \ge 0\}$. In the new automata M_u we would have a path $\delta^*(q_1, aa\lambda)$ bringing to an accepting state (namely q_2), but $aab \notin L(M_1) \cup L(M_2)$.

3.51a See Figure 3.40 (a). We use the *algebraic* of Brzozowski to derive for the depicted automata a corresponding regular expression.

First we write the automaton in Figure 3.40 (a) as a system of 3 equations in three variables:

$$\begin{array}{rcl} x_1 &=& ax_3 + bx_2 \\ x_2 &=& ax_1 + bx_3 \\ x_3 &=& ax_2 + bx_1 + \Lambda \end{array}$$

By substituting x_3 in the first two equations we obtain the system

$$\begin{aligned} x_1 &= a(ax_2 + bx_1 + \Lambda) + bx_2 = abx_1 + (aa + b)x_2 + a \\ x_2 &= ax_1 + b(ax_2 + bx_1 + \Lambda) = bax_2 + ((a + bb)x_1 + b) \end{aligned}$$

Using the Arden's lemma, we obtain that $x_2 = (ba)^*((a+bb)x_1+b)$. If we substitute x_2 in the first equations we have

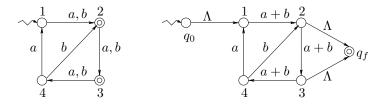
$$x_1 = abx_1 + (aa+b)(ba)^*((a+bb)x_1+b) + a$$

= $(ab + (aa+b)(ba)^*(a+bb))x_1 + ((aa+b)(ba)^*b + a)$

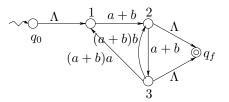
Using again Arden's lemma, we obtain that $x_1 = ((ab + (aa + b)(ba)^*(a + bb)))^*((aa + b)(ba)^*b + a)$. This is a regular expression denoting the same language of the automaton in Figure 3.40 (a).

3.51 c See Figure 3.40 (c). We use the *state removal method* of Brzozowski and McCluskey to derive for the depicted automata a corresponding regular expression.

First we add a new initial state q_0 without incoming transitions and a new (the only) final state q_f without outgoing transitions in such a way that the resulting NFA accepts the same language (see exercise 3.44). At the same time we combine with + the labels of parallel edges into a single regular expression.



Now we remove state 4. Before deleting 4, we consider the transitions from 3 to 4 and from 4 to 1 and 2. This leads to the introduction of an arc labeled with (a + b)a from 3 to 1 and an arc labeled with (a + b)b from 3 to 2.



Then state 1 is removed. This leads to the introduction of an arc labeled with $\Lambda(a+b)$ from q_0 to 2 and an arc labeled with (a+b)a(a+b) from 3 to 2. The latter is combined using + with the label (a+b)b of the already existing arc from 3 to 2.

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ (a+b)b+(a+b)a(a+b) & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

Then state 3 is removed. This leads to the introduction of an arc labeled with $(a + b)\Lambda$ from 2 to q_f which is combined with the existing parallel arc labeled with Λ . Also an arc from 2 to 2 is added which is labeled with (a+b)((a+b)b+(a+b)a(a+b)), a combination of the label of the arc from 2 to 3 and that of the arc from 3 to 2.

$$(a+b)((a+b)b+(a+b)a(a+b))$$

Finally, we remove state 2 and find a regular expression for L(M).

$$\Lambda(a+b)((a+b)b+(a+b)a(a+b)))^*(\Lambda+(a+b)\Lambda)$$

 $L(M) = \{a,b\}(\{a,b\}\{b\}\cup\{a,b\}\{a\}\{a,b\}))^*\{\Lambda,a,b\}.$

version 19 September 2011