Exercise 3.51 (variant).

Use the algorithm of Brzozowski and McCluskey to find a regular expression corresponding to the FA below.
a.

Exercise 4.10. Find context-free grammars generating each of the languages below.
a. $\left\{a^{i} b^{j} \mid i \leq j\right\}$
c. $\left\{a^{i} b^{j} \mid j=2 i\right\}$
e. $\left\{a^{i} b^{j} \mid j \leq 2 i\right\}$
f. $\left\{a^{i} b^{j} \mid j<2 i\right\}$
d. $\left\{a^{i} b^{j} \mid i \leq j \leq 2 i\right\}$
d2. $\left\{a^{i} b^{j} \mid i<j<2 i\right\}$

Exercise 4.12.

Find a context-free grammar generating the language

$$
\left\{a^{i} b^{j} c^{k} \quad \mid i \neq j+k\right\}
$$

Exercise 4.1. In each case below, say what language (a subset of $\left.\{a, b\}^{*}\right)$ is generated by the context-free grammar with the indicated productions.
b. $S \rightarrow S S|b S| a$
c. $S \rightarrow S a S \mid b$
e. $S \rightarrow T T \quad T \rightarrow a T|T a| b$
f. $S \rightarrow a S a|b S b| a A b|b A a \quad A \rightarrow a A a| b A b|a| b \mid \wedge$
g. $S \rightarrow a T|b T| \wedge \quad T \rightarrow a S \mid b S$

Exercise 4.3. In each case below, find a CFG generating the given language.
b. The set of even-length strings in $\{a, b\}^{*}$ with the two middle symbols equal.
c. The set of odd-length strings in $\{a, b\}^{*}$ whose first, middle, and last symbols are all the same.

Exercise 4.4. In both parts below, the productions in a CFG G are given.
In each part, show first that for every string $x \in L(G), n_{a}(x)=$ $n_{b}(x)$; then find a string $x \in\{a, b\}^{*}$ with $n_{a}(x)=n_{b}(x)$ that is not in $L(G)$.
a. $S \rightarrow S a b S|S b a S| \wedge$
b. $S \rightarrow a S b|b S a| a b S|b a S| S a b|S b a| \wedge$

Exercise 4.9. Suppose that $G_{1}=\left(V_{1},\{a, b\}, S_{1}, P_{1}\right)$ and $G_{2}=$ ($V_{2},\{a, b\}, S_{2}, P_{2}$) are CFGs and that $V_{1} \cap V_{2}=\varnothing$.
a. It is easy to see that no matter what G_{1} and G_{2} are, the CFG $G_{u}=\left(V_{u},\{a, b\}, S_{u}, P_{u}\right)$ defined by $V_{u}=V_{1} \cup V_{2}, S_{u}=S_{1}$ and $P_{u}=P_{1} \cup P_{2} \cup\left\{S_{1} \rightarrow S_{2}\right\}$ generates every string in $L\left(G_{1}\right) \cup L\left(G_{2}\right)$. Find grammars G_{1} and G_{2} (you can use $V_{1}=\left\{S_{1}\right\}$ and $V_{2}=\left\{S_{2}\right\}$) and a string $x \in L\left(G_{u}\right)$ such that $x \notin L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
b. As in part (a), the CFG $G_{c}=\left(V_{c},\{a, b\}, S_{c}, P_{c}\right)$ defined by $V_{c}=V_{1} \cup V_{2}, S_{c}=S_{1}$ and $P_{c}=P_{1} \cup P_{2} \cup\left\{S_{1} \rightarrow S_{1} S_{2}\right\}$ generates every string in $L\left(G_{1}\right) L\left(G_{2}\right)$.
Find grammars G_{1} and G_{2} (again with $V_{1}=\left\{S_{1}\right\}$ and $V_{2}=\left\{S_{2}\right\}$) and a string $x \in L\left(G_{c}\right)$ such that $x \notin L\left(G_{1}\right) L\left(G_{2}\right)$.

Exercise 4.9. (continued)
c. The CFG $G^{*}=(V,\{a, b\}, S, P)$ defined by $V=V_{1}, S=S_{1}$ and $P=P_{1} \cup\left\{S_{1} \rightarrow S_{1} S_{1} \mid \wedge\right\}$ generates every string in $L\left(G_{1}\right)^{*}$. Find a grammar G_{1} with $V_{1}=\left\{S_{1}\right\}$ and a string $x \in L\left(G^{*}\right)$ such that $x \notin L\left(G_{1}\right)^{*}$.

