Exercise 2.33.

Let x be a string of length n in $\{a, b\}^{*}$, and let $L=\{x\}$.

How many equivalence classes does \equiv_{L} have? Describe them.

Hint: first draw an FA accepting L.

Exercise 2.36.

For a certain language $L \subseteq\{a, b\}^{*}, \equiv_{L}$ has exactly four equivalence classes. They are $[\wedge],[a],[a b]$ and $[b]$.

It is also true that the three strings $a, a a$, and $a b b$ are all equivalent, and that the two strings b and $a b a$ are equivalent.

Finally, $a b \in L$, but \wedge and a are not in L, and b is not even a prefix of any element of L.

Draw an FA accepting L.

Exercise 2.37.

Suppose $L \subseteq\{a, b\}^{*}$ and \equiv_{L} has three equivalence classes. Suppose they can be described as the three sets [a], [aa], and [aaa], and also as the three sets $[b],[b b]$, and $[b b b]$.

How many possibilities are there for the language L ? For each one, draw a transition diagram for an FA accepting it.

Exercise 2.38.

In each part, find every possible language $L \subseteq\{a, b\}^{*}$ for which the equivalence classes of \equiv_{L} are the given three sets.
a. $\{a, b\}^{*}\{b\}, \quad\{a, b\}^{*}\{b a\}, \quad\{\Lambda, a\} \cup\{a, b\}^{*}\{a a\}$

Exercise 2.40 .

Consider the language

$$
L=A E q B=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)=n_{b}(x)\right\}
$$

Let x and y be arbitary elements of $\{a, b\}^{*}$ (not necessarily in L)
a. Show that if $n_{a}(x)-n_{b}(x)=n_{a}(y)-n_{b}(y)$, then $x \equiv_{L} y$.
b. Show that if $n_{a}(x)-n_{b}(x) \neq n_{a}(y)-n_{b}(y)$, then x and y are L-distinguishable.
c. Describe all the equivalence classes of \equiv_{L}.

Exercise 2.55.

For each of the FAs below, use the minimization algorithm described in Section 2.6 to find a minimum-state FA accepting the same language. (It's possible that the given FA is already minimal.)
a.

Exercise 2.55.

For each of the FAs below, use the minimization algorithm described in Section 2.6 to find a minimum-state FA accepting the same language. (It's possible that the given FA is already minimal.)
C.

