Exercise 2.10. Let M_1 and M_2 be the FAs pictured below, accepting languages L_1 and L_2 , respectively.

Draw FAs accepting the following languages.

- **a.** $L_1 \cup L_2$
- **b.** $L_1 \cap L_2$
- c. $L_1 L_2$

Exercise 2.22. For each of the following languages, use the pumping lemma to show that it cannot be accepted by an FA.

a.
$$L = \{a^i b a^{2i} \mid i \ge 0\}$$

b.
$$L = \{a^i b^j a^k \mid k > i + j\}$$

d. $L = \{a^i b^j \mid j \text{ is a multiple of } i \}$

e.
$$L = \{x \in \{a, b\}^* \mid n_a(x) < 2n_b(x)\}$$

f. $L = \{x \in \{a,b\}^* \mid \text{ no prefix of } x \text{ has more } b \text{'s than } a \text{'s } \}$

h.
$$L = \{ww \mid w \in \{a, b\}^*\}$$

Exercise.

Use the pumping lemma to show that the following language cannot be accepted by an FA.

$$L = \{(ab)^i a^i \mid i \ge 0\}$$

Exercise 2.24.

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n such that for any $x \in L$ with $|x| \geq n$ and for any way of writing x as $x_1x_2x_3$ with $|x_2| = n$, there are strings u, v and w such that

- a. $x_2 = uvw$
- b. $|v| \ge 1$
- c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Exercise 2.26.

The pumping lemma says that if M accepts a language L, and if n is the number of states of M, then for every $x \in L$ satisfying $|x| \geq n$, . . .

Show that the statement provides no information if L is finite: If M accepts a finite language L, and n is the number of states of M, then L can contain no strings of length n or greater.