Exercise 2.10. Let M_{1} and M_{2} be the FAs pictured below, accepting languages L_{1} and L_{2}, respectively.

Draw FAs accepting the following languages.
a. $L_{1} \cup L_{2}$
b. $L_{1} \cap L_{2}$
c. $L_{1}-L_{2}$

Exercise 2.22. For each of the following languages, use the pumping lemma to show that it cannot be accepted by an FA.
a. $L=\left\{a^{i} b a^{2 i} \mid i \geq 0\right\}$
b. $L=\left\{a^{i} b^{j} a^{k} \mid k>i+j\right\}$
d. $L=\left\{a^{i} b^{j} \mid j\right.$ is a multiple of $\left.i\right\}$
e. $L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)<2 n_{b}(x)\right\}$
f. $L=\left\{x \in\{a, b\}^{*} \mid\right.$ no prefix of x has more b 's than a 's $\}$
h. $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$

Exercise.

Use the pumping lemma to show that the following language cannot be accepted by an FA.

$$
L=\left\{(a b)^{i} a^{i} \quad \mid \quad i \geq 0\right\}
$$

Exercise 2.24.

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n
such that for any $x \in L$ with $|x| \geq n$
and for any way of writing x as $x_{1} x_{2} x_{3}$ with $\left|x_{2}\right|=n$, there are strings u, v and w such that
a. $x_{2}=u v w$
b. $|v| \geq 1$
c. For every $m \geq 0, x_{1} u v^{m} w x_{3} \in L$

Exercise 2.26.

The pumping lemma says that
if M accepts a language L, and if n is the number of states of M, then for every $x \in L$ satisfying $|x| \geq n, \ldots$

Show that the statement provides no information if L is finite:
If M accepts a finite language L, and n is the number of states of M, then L can contain no strings of length n or greater.

