Pumping lemma for regular languages

From lecture 2:

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

```
\forall \quad \textit{for every } x \in L \\ \textit{satisfying } |x| \geqslant n
```

 \exists there are three strings u, v, and w,

such that x = uvw and the following three conditions are true:

- $(1) |uv| \leqslant n,$
- (2) $|v| \ge 1$
- \forall and (3) for all $m \geqslant 0$, $uv^m w$ belongs to L

[M] Thm. 2.29

Unary languages

 $L \subseteq \{a\}^*$

Example

$$L = \{ a^{i^2} \mid i \geqslant 0 \}$$
 is not accepted by FA

$$L = \{\Lambda, a, aaaa, aaaaaaaaa, \ldots\}$$
[M] E 2.32

Fun fact

$$L^4 = \{a\}^*$$

Lagrange's four-square theorem

The length of uv^2w cannot be a square: we will show it is strictly in between two consecutive squares. $|uv^2w| = |z| + |v| > |z| = n^2$.

$$|uv^2w| = |z| + |v| > |z| = n^2.$$

 $|uv^2w| = |z| + |v| \le n^2 + n < (n+1)^2.$

C programs

Let L be the set of legal C programs.

$$x = \min()\{\{\{...\}\}\}$$

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

If L can be accepted by an FA, then there is an integer n such that for any $x \in L$ with $|x| \geqslant n$ and for any way of writing x as $x_1x_2x_3$ with $|x_2| = n$, there are strings u, v and w such that

- a. $x_2 = uvw$
- b. $|v| \ge 1$
- c. For every $m \geqslant 0$, $x_1 u v^m w x_3 \in L$

Not a characterization

$$L = \{ a^i b^j c^j \mid i \geqslant 1 \text{ and } j \geqslant 0 \} \cup \{ b^j c^k \mid j, k \geqslant 0 \}$$

- can be pumped, as in the pumping lemma
- is not accepted by FA

Decision problem: problem for which the answer is 'yes' or 'no':

Given ..., is it true that ...?

Given an undirected graph G = (V, E), does G contain a Hamiltonian path?

Given a list of integers $x_1, x_2, ..., x_n$, is the list sorted?

 $decidable \iff \exists$ algorithm that decides

$$M = (Q, \Sigma, \delta, q_0, A)$$

membership problem $x \in L(M)$?

Specific to M: Given $x \in \Sigma^*$, is $x \in L(M)$?

Arbitrary M: Given FA M with alphabet Σ , and $x \in \Sigma^*$, is $x \in L(M)$?

Decidable, easy

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

Lemma

Let M be an FA with n states and let L = L(M).

L is nonempty, if and only if L contains an element x with |x| < n (at least one such element).

Theorem

The following two problems are decidable

- 1. Given an FA M, is L(M) nonempty?
- 2. Given an FA M, is L(M) infinite?

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite, if and only if L contains an element x with $|x| \ge n$ (at least one such element).

cf. [M] Exercise 2.26

Lemma

Let M be an FA with n states and let L = L(M).

L is infinite, if and only if L contains an element x with $|x| \ge n$ (at least one such element).

Lemma

Let M be an FA with n states and let L = L(M).

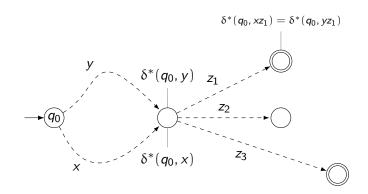
L contains an element x with $|x| \ge n$ (at least one such element) if and only if L contains an element x with $n \le |x| < 2n$ (at least one such element).

- Give 2-state FA for each of the languages over {a, b}
 - strings with even number of a's
 - strings with at least one b
- Use the product construction to obtain a 4-state FA for the language of strings with even number of a's or at least one b
- Investigate which states can be merged

From lecture 1:

Example

Same state, same future



Distinguishing strings

Definition

Let L be language over Σ , and let $x, y \in \Sigma^*$.

Then x, y are distinguishable wrt L (L-distinguishable),

if there exists $z \in \Sigma^*$ with

$$xz \in L$$
 and $yz \notin L$ or $xz \notin L$ and $yz \in L$

Such z distinguishes x and y wrt L.

Equivalent definition:

let
$$L/x = \{ z \in \Sigma^* \mid xz \in L \}$$

x and y are L-distinguishable if $L/x \neq L/y$.

Otherwise, they are *L-indistinguishable*.

The strings in a set $S \subseteq \Sigma^*$ are *pairwise L-distinguishable*, if for every pair x, y of distinct strings in S, x and y are L-distinguishable.

Definition independent of FAs

[M] D 2.20

From lecture 1:

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$\begin{matrix} b & & a \\ & & & a \end{matrix}$$

$$\begin{matrix} b & & & a \\ & & & & & a \end{matrix}$$

$$S = \{\Lambda, a, aa\}$$

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$L/x$$
 for $x = \Lambda$, a, b, aa . . .

Theorem

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA accepting $L \subseteq \Sigma^*$.

If $x, y \in \Sigma^*$ are L-distinguishable, then $\delta^*(q_0, x) \neq \delta^*(q_0, y)$.

For every $n \ge 2$, if there is a set of n pairwise L-distinguishable strings in Σ^* , then Q must contain at least n states.

Hence, indeed: if $\delta^*(q_0, x) = \delta^*(q_0, y)$, then x and y are not L-distinguishable.

Proof...

[M] Thm 2.21

Exercise 2.5.

Suppose $M=(Q,\Sigma,q_0,A,\delta)$ is an FA, q is an element of Q, and x and y are strings in Σ^* . Using stuctural induction on y, prove the formula

$$\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$$

From lecture 1:

Example

$$L_1 = \{ x \in \{a, b\}^* \mid x \text{ ends with } aa \}$$

$$b \qquad a \qquad a \qquad a \qquad a \qquad a$$

$$q_0 \qquad b \qquad q_1 \qquad a \qquad q_2$$

$$S = \{\Lambda, a, aa\}$$

Distinguishing states

 $L = \{aa, aab\}^*\{b\}$ [M] E 2.22

Distinguishing states

$$L = \{aa, aab\}^*\{b\}$$

