Section 6

Context-Free and Non-Context-Free Languages

Chapter

- - 6 Context-Free and Non-Context-Free Languages
 - Pumping Lemma
 - Decision problems

Huiswerk...

Volgende week: geen werkcollege 's middags? Vragenuur: vrijdag 16 december, 13.15-15.00?

From lecture 2:

Regular language is language accepted by an FA.

Theorem

Suppose L is a language over the alphabet Σ . If L is accepted by a finite automaton M, and if n is the number of states of M, then

 $\forall \quad \text{for every } x \in L \\ \text{satisfying } |x| > n \\ \end{cases}$

```
∃ there are three string u, v, and w,
such that x = uvw and the following three conditions are true:
(1) |uv| \le n,
(2) |v| \ge 1
```

 \forall and (3) for all $i \geq 0$, $uv^i w$ belongs to L

[M] Thm. 2.29

Automata Theory Context-Free and Non-Context-Free Languages

Pumping lemma

From lecture 2:

[M] Fig. 2.28

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

< ≣ >406 / 417

Pumping CF derivations

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

< ≣ >407 / 417

Pumping CF derivations

Pumping Lemma

▲ ■ ▶
 408 / 417

Theorem (Pumping Lemma for context-free languages)

```
\forall for every context-free language L
```

```
\exists there exists a constant <math>n \ge 2
such that
```

```
\forall \quad for \ every \ u \in L
```

```
with |u| \ge n
```

```
∃ there exists a decomposition u = vwxyz
such that
(1) |wy| \ge 1
(2) |wxy| \le n,
∀ (3) for all m \ge 0, vw^mxy^mz \in L
```

[M] Thm. 6.1

Automata Theory Context-Free and Non-Context-Free Languages

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3

Automata Theory Context-Free and Non-Context-Free Languages

Theorem (Pumping Lemma for context-free languages) for every context-free language L A there exists a constant n > 2such that for every $u \in L$ A with |u| > nF there exists a decomposition u = vwxyzsuch that (1) $|wy| \ge 1$ (2) $|wxy| \leq n$, \forall (3) for all $m \ge 0$, $vw^m xy^m z \in L$

If L = L(G) with G in ChNF, then $n = 2^{|V|}$. Proof... [M] Thm. 6.1

Automata Theory Context-Free and Non-Context-Free Languages

From lecture 9:

Definition

CFG in *Chomsky normal form* productions are of the form $-A \rightarrow BC$ variables A, B, C $-A \rightarrow \sigma$ variable A, terminal σ

Theorem

For every CFG G there is CFG G_1 in CNF such that $L(G_1) = L(G) - \{\Lambda\}$.

[M] Def 4.29, Thm 4.30

Automata Theory Context-Free and Non-Context-Free Languages

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1

Proof

Let G be CFG in Chomsky normal form with $L(G) = L - \{\Lambda\}$.

Derivation tree in G is binary tree

(where each parent of a leaf node has only one child).

Height of a tree is number of edges in longest path from root to leaf node.

At most 2^h leaf nodes in binary tree of height h: $|u| \le 2^h$.

 $<\Xi >$

Theorem (Pumping Lemma for context-free languages)

[M] Thm. 6.1 **Proof** (continued)

At most 2^h leaf nodes in binary tree of height h: $|u| \le 2^h$.

```
Let p be number of variables in G,
let n = 2^p
and let u \in L(G) with |u| \ge n.
```

(Internal part of) derivation tree of u in G has height at least p. Hence, longest path in (internal part of) tree contains at least p + 1 (internal) nodes.

Consider final portion of longest path in derivation tree. (leaf node + p + 1 internal nodes), with ≥ 2 occurrences of a variable A.

Pump up derivation tree, and hence u.

Application of pumping lemma:

mainly to prove that a language L cannot be generated by a context-free grammar.

```
How?
Find a string u \in L with |u| \ge n that cannot be pumped up!
What is n?
What should u be?
What can v, w, x, y and z be?
What should m be?
```

Suppose that there exists context-free grammar *G* with L(G) = L. Let $n \ge 2$ be the integer from the pumping lemma. We prove:

There exists $u \in L$ with $|u| \ge n$, such that for every five strings v, w, x, y and z such that u = vwxyzif

1.
$$|wy| \ge 1$$

2.
$$|wxy| \leq n$$

then

3. there exists $m \ge 0$, such that $vw^m xy^m z$ does not belong to L

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

[M] E 6.3 $u = a^n b^n c^n$ { $x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)$ }

Example

XX is not context-free.

[M] E 6.4

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

4 ≣ ▶417 / 417

Applying the Pumping Lemma

Example

AnBnCn is not context-free.

 $\begin{bmatrix} M \end{bmatrix} E 6.3$ $u = a^n b^n c^n$ $\{ x \in \{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x) \}$

Example

XX is not context-free.

 $\begin{bmatrix} M \end{bmatrix} \in 6.4 \\ u = a^n b^n a^n b^n \\ \left\{ \begin{array}{l} a^i b^j a^i b^j \mid i, j \ge 0 \end{array} \right\}$

Example

$$\{ x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \}$$
 is not context-free.

[M] E 6.5

Automata Theory Context-Free and Non-Context-Free Languages

ABOVE

 $L = \{ x \in \{a, b, c\}^* \mid n_a(x) < n_b(x) \text{ and } n_a(x) < n_c(x) \}$ is not context-free.

Proof by contradiction.

Suppose L is context-free, then there exists a pumping constant n for L.

Choose $u = a^n b^{n+1} c^{n+1}$. Then $u \in L$, and $|u| \ge n$.

This means that we can pump u within the language L.

Consider a decomposition u = vwxyz that satisfies the pumping lemma, in particular $|wxy| \le n$.

Case 1: wy contains a letter a. Then wy cannot contain letter c (otherwise |wxy| > n). Now $u_2 = vw^2xy^2z$ contains more a's than u, so at least n + 1, while u_2 still contains n + 1 c's. Hence $u_2 \notin L$.

Case 2: wy contains no a. Then wy contains at least one b or one c (or both). Then $u_0 = vw^0 xy^0 z = vxz$ has still n a's, but less than n+1 b's or less than n+1 c's (depending on which letter is in wy). Hence $u_0 \notin L$.

These are two possibilities for the decomposition vwxyz, in both cases we see that pumping leads out of the language L.

Hence u cannot be pumped.

Contradiction; so L is not context-free.

Example

The Set of Legal C Programs is Not a CFL

```
[M] E 6.6
Choose u =
main(){int aaa...a;aaa...a=aaa...a;}
where aaa...a contains n + 1 a's
```

Applying the Pumping Lemma (2)

This exercise does not have to be known for the exam.

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

4 ≥ 420 / 417

From lecture 3:

Prove the following generalization of the pumping lemma, which can sometimes make it unnecessary to break the proof into cases.

```
If L can be accepted by an FA,
then there is an integer n
such that for any x \in L with |x| \ge n
and for any way of writing x as x_1x_2x_3 with |x_2| = n,
there are strings u, v and w such that
```

- a. $x_2 = uvw$
- b. $|v| \ge 1$
- c. For every $m \ge 0$, $x_1 u v^m w x_3 \in L$

Ogden's Lemma

Generalization of pumping lemma for CFL: pump at distinguished positions in uOgden's lemma does not have to be known for the exam.

< ∃ >

Combining languages

From lecture 2: FA $M_i = (Q_i, \Sigma, q_i, A_i, \delta_i)$ i = 1, 2

Product construction

construct FA $M = (Q, \Sigma, q_0, A, \delta)$ such that $-Q = Q_1 \times Q_2$ $-q_0 = (q_1, q_2)$ $-\delta((p, q), \sigma) = (\delta_1(p, \sigma), \delta_2(q, \sigma))$ -A as needed

Theorem (2.15 Parallel simulation) $-A = \{(p,q) \mid p \in A_1 \text{ or } q \in A_2\}, \text{ then } L(M) = L(M_1) \cup L(M_2)$ $-A = \{(p,q) \mid p \in A_1 \text{ and } q \in A_2\}, \text{ then } L(M) = L(M_1) \cap L(M_2)$ $-A = \{(p,q) \mid p \in A_1 \text{ and } q \notin A_2\}, \text{ then } L(M) = L(M_1) - L(M_2)$

Proof. . .

[M] Sect 2.2 Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

423 / 417

Closure

From lecture 6:

Regular languages are closed under

- Boolean operations (complement, union, intersection)
- Regular operations (union, concatenation, star)
- Reverse (mirror)
- [inverse] Homomorphism

Regular operations and CFL

From lecture 7:

Using building blocks

Theorem

If L_1, L_2 are CFL, then so are $L_1 \cup L_2$, L_1L_2 and L_1^* .

 $G_i = (V_i, \Sigma, S_i, P_i)$, having no variables in common.

Construction

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma, S, P), \text{ new axiom } S$$

- $P = P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$ $L(G) = L(G_1) \cup L(G_2)$
- $P = P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\}$ $L(G) = L(G_1)L(G_2)$
 $G = (V_1 \cup \{S\}, \Sigma, S, P), \text{ new axiom } S$
- $P = P_1 \cup \{S \rightarrow SS_1, S \rightarrow \Lambda\}$ $L(G) = L(G_1)^*$

[M] Thm 4.9

Automata Theory Context-Free and Non-Context-Free Languages

How about

• $L_1 \cap L_2$ • $L_1 - L_2$ • L'_1 for CFLs L_1 and L_2 ?

From lecture 8:

Example

AnBnCn is intersection of two context-free languages.

$$L_{1} = \{a^{i}b^{i}c^{k} \mid i, k \ge 0\}$$

$$L_{2} = \{a^{i}b^{k}c^{k} \mid i, k \ge 0\}$$

[M] E 6.10

Hence, CFL is not closed under intersection

Automata Theory Context-Free and Non-Context-Free Languages

Example

AnBnCn is intersection of two context-free languages.

 $\ensuremath{\left[\ensuremath{\mathbb{M}} \ensuremath{\right]}\xspace}$ E 6.10 Hence, CFL is not closed under intersection

$$\label{eq:L1} \begin{split} \mathcal{L}_1 \cap \mathcal{L}_2 &= (\mathcal{L}_1' \cup \mathcal{L}_2')' \\ \text{Hence, CFL is not closed under complement} \end{split}$$

Automata Theory Context-Free and Non-Context-Free Languages

Example

 $\begin{array}{l} \text{Complement of } XX \\ = \{ \; x \in \{a,b\}^* \; | \; \; |x| \; \text{is odd} \; \} \cup \{ \; x \; y \; | \; x,y \in \{a,b\}^*, |x| = |y|, x \neq y \; \} \\ \text{is context-free} \end{array}$

 $\ensuremath{\left[\ensuremath{\mathbb{M}} \right]}\xspace E 6.11$ Indeed, CFL is not closed under complement

Automata Theory Context-Free and Non-Context-Free Languages

Pumping Lemma

4 ≣ ▶429 / 417