ALGORITMIEK: some solutions to exercise class 9

Problem 2.
We use the algorithm from the lecture slides to fill the knapsack table row-by-row. This
yields the following table:

capacity j
1|0 1 2 3 4 5 6
0ojo o o0 O 0 0 0
w=3,v1=25 1[0 0 0 25 25 25 25
we =2,v5=20 2|0 0 20 25 25 45 45
ws=1l,u3=15 3]0 15 20 35 40 45 60
wy =4,v4,=40 4]0 15 20 35 40 55 60
ws =5, =050 5|0 15 20 35 40 55 65
F

The maximal value of a feasible subset is F'[5][6] = 65. The optimal subset is {item 3, item 5}.

Problem 3.

a. As said, P(i,j) is the probability of A winning the series if A needs i more games
to win the series and B needs j more games to win the series. If team A wins the next
game, which happens with probability p, A will need ¢ — 1 more wins to win the series
while B will still need j wins. If team A looses the game, which happens with probability
g =1—p, A will still need ¢ wins while B will need j — 1 wins to win the series. This
leads to the recurrence relation:

P(i,j)=p-Pi—1,j)+q-P@i,j—1) fori,j >0
The initial conditions follow immediately from the definition of P(i,j):
P(0,5)=1for j >0, P(,0) =0 fori >0

b. Here is the dynamic programming table in question, with its entries rounded-off to two
decimal places. (It can be filled either row-by-row, or column-by-column, or diagonal-by-
diagonal.)

Njlo 1 2 3 4
0 1 1 1 1
1[0 040 0.64 0.78 0.87
2 10 016 035 052 0.66
310 006 018 0.32 0.46
410 003 009 018 0.29

Algorithm WorldSeries (int n, double p)
// Computes the odds of winning a series of n games
// Input: A number of wins n needed to win the series
// and probability p of one particular team winning a game
// Output: The probability of this team winning the series
{q=1-p;

for (j=1; j<=n; j++)



P[O][j] = 1.0;
for (i=1; i<=n; i++) {
P[i][0] = 0.0;
for (j=1; j<=n; j++)
P[i][j] = p * P[i-1][j] + q * P[i][j-1];
+

return P[n] [n];

}

Problem 6. The quantity C(n, k) satisfies the following recurrence relation:
n—1 n—1
n) (k_1)+(k) O0<k<n
1 k=0,n

a. We can fill a two-dimensional array C, where C[i][j] = (;) , row-by-row with the following
bottom-up DP algorithm:

int bin(int n,int k) {
for (1 =0; 1 <=n; i++ )
for ( j = 0; j <= min(i,k); j++ )
if CCj=0) 11 Cj==1))
Ccli] [j] 1;
else
Clil [j]
return C[n] [k];

Cli-11[j-11 + cl[i-11[j];

}

We use algorithm bin to fill the table. We only fill columns 0-3, because we do not need
higher columns to compute C(6,3). This yields the following numbers:

Njlo 1 2 3
0 |1

11 1

2 11 2 1
3113 3 1
411 4 6 4
511 5 10 10
6 1 6 15 20

b. Yes, the table can also be filled column-by-column, with each column filled top-to-
bottom starting with 1 on the main diagonal of the table. This is achieved with the
following code:

int bin4 (int n, int k) {
for (j=0; j<=k; j++)
for (i=j; i<=n; i++)
if (j==0 || j==1)
Cclil [j] = 1;
else



Clil[j] = Cli-11[j-1]1 + cl[i-11[j];

return C[n] [k];
}



