ALGORITMIEK: some solutions to exercise class 9

Problem 2.

We use the algorithm from the lecture slides to fill the knapsack table row-by-row. This yields the following table:

		capacity j						
$w_{1}=3, v_{1}=25$	i	0	1	2	3	4	5	6
	1	0	0	0	0	0	0	0
$w_{2}=2, v_{2}=20$	2	0	0	0	25	25	25	25
$w_{3}=1, v_{3}=15$	3	0	15	20	20	35	25	45
45	45	60						
$w_{4}=4, v_{4}=40$	4	0	15	20	35	40	55	60
$w_{5}=5, v_{5}=50$	5	0	15	20	35	40	55	65

The maximal value of a feasible subset is $F[5][6]=65$. The optimal subset is $\{$ item 3 , item 5$\}$.

Problem 3.

a. As said, $P(i, j)$ is the probability of A winning the series if A needs i more games to win the series and B needs j more games to win the series. If team A wins the next game, which happens with probability p, A will need $i-1$ more wins to win the series while B will still need j wins. If team A looses the game, which happens with probability $q=1-p$, A will still need i wins while B will need $j-1$ wins to win the series. This leads to the recurrence relation:

$$
P(i, j)=p \cdot P(i-1, j)+q \cdot P(i, j-1) \text { for } i, j>0
$$

The initial conditions follow immediately from the definition of $P(i, j)$:

$$
P(0, j)=1 \text { for } j>0, P(i, 0)=0 \text { for } i>0
$$

b. Here is the dynamic programming table in question, with its entries rounded-off to two decimal places. (It can be filled either row-by-row, or column-by-column, or diagonal-bydiagonal.)

$i \backslash j$	0	1	2	3	4
0		1	1	1	1
1	0	0.40	0.64	0.78	0.87
2	0	0.16	0.35	0.52	0.66
3	0	0.06	0.18	0.32	0.46
4	0	0.03	0.09	0.18	0.29

c.

```
Algorithm WorldSeries (int n, double p)
// Computes the odds of winning a series of n games
// Input: A number of wins n needed to win the series
// and probability p of one particular team winning a game
// Output: The probability of this team winning the series
{ q = 1-p;
    for (j=1; j<=n; j++)
```

```
        P[0][j] = 1.0;
    for (i=1; i<=n; i++) {
        P[i] [0] = 0.0;
        for (j=1; j<=n; j++)
        P[i][j] = p * P[i-1][j] + q * P[i][j-1];
    }
    return P[n] [n];
}
```


Problem 6.

a. We use algorithm bin3 from the lecture slides to fill the table row-by-row. We only fill columns $0-3$, because we do not need higher columns to compute $C(6,3)$. This yields the following numbers:

$i \backslash j$	0	1	2	3
0	1			
1	1	1		
2	1	2	1	
3	1	3	3	1
4	1	4	6	4
5	1	5	10	10
6	1	6	15	20

b. Yes, the table can also be filled column-by-column, with each column filled top-tobottom starting with 1 on the main diagonal of the table. This is achieved with the following code:

```
int bin4 (int n, int k) {
    for (j=0; j<=k; j++)
        for (i=j; i<=n; i++)
            if (j==0 || j==i)
                C[i][j] = 1;
            else
                C[i][j] = C[i-1][j-1] + C[i-1][j];
    return C[n] [k];
}
```

