
ALGORITMIEK: some solutions to exercise class 9

Problem 2.

We use the algorithm from the lecture slides to fill the knapsack table row-by-row. This
yields the following table:

capacity j

i 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

w1 = 3, v1 = 25 1 0 0 0 25 25 25 25
w2 = 2, v2 = 20 2 0 0 20 25 25 45 45
w3 = 1, v3 = 15 3 0 15 20 35 40 45 60
w4 = 4, v4 = 40 4 0 15 20 35 40 55 60
w5 = 5, v5 = 50 5 0 15 20 35 40 55 65

The maximal value of a feasible subset is F [5][6] = 65. The optimal subset is {item 3, item 5}.

Problem 3.

a. As said, P (i, j) is the probability of A winning the series if A needs i more games
to win the series and B needs j more games to win the series. If team A wins the next
game, which happens with probability p, A will need i − 1 more wins to win the series
while B will still need j wins. If team A looses the game, which happens with probability
q = 1 − p, A will still need i wins while B will need j − 1 wins to win the series. This
leads to the recurrence relation:

P (i, j) = p · P (i− 1, j) + q · P (i, j − 1) for i, j > 0

The initial conditions follow immediately from the definition of P (i, j):

P (0, j) = 1 for j > 0, P (i, 0) = 0 for i > 0

b. Here is the dynamic programming table in question, with its entries rounded-off to two
decimal places. (It can be filled either row-by-row, or column-by-column, or diagonal-by-
diagonal.)

i\j 0 1 2 3 4
0 1 1 1 1
1 0 0.40 0.64 0.78 0.87
2 0 0.16 0.35 0.52 0.66
3 0 0.06 0.18 0.32 0.46
4 0 0.03 0.09 0.18 0.29

c.

Algorithm WorldSeries (int n, double p)

// Computes the odds of winning a series of n games

// Input: A number of wins n needed to win the series

// and probability p of one particular team winning a game

// Output: The probability of this team winning the series

{ q = 1-p;

for (j=1; j<=n; j++)

1

P[0][j] = 1.0;

for (i=1; i<=n; i++) {

P[i][0] = 0.0;

for (j=1; j<=n; j++)

P[i][j] = p * P[i-1][j] + q * P[i][j-1];

}

return P[n][n];

}

Problem 6.

a. We use algorithm bin3 from the lecture slides to fill the table row-by-row. We only fill
columns 0–3, because we do not need higher columns to compute C(6, 3). This yields the
following numbers:

i\j 0 1 2 3
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4
5 1 5 10 10
6 1 6 15 20

b. Yes, the table can also be filled column-by-column, with each column filled top-to-
bottom starting with 1 on the main diagonal of the table. This is achieved with the
following code:

int bin4 (int n, int k) {

for (j=0; j<=k; j++)

for (i=j; i<=n; i++)

if (j==0 || j==i)

C[i][j] = 1;

else

C[i][j] = C[i-1][j-1] + C[i-1][j];

return C[n][k];

}

2

