sy

Computing a Binomial Coefficient

Computing a binomial coefficient is a standard example of applying dynﬂﬂ?lc
programming to a nonoptimization problem. You may recall from your studies
of elementary combinatorics that the binomial coefficient, denoted Cin, k) Of
(%), is the number of combinations (subsets) of k elements from an n-element

8.1 Computing a Binomial Coeflicient _ 281

set (0 < & < n). The name “binomial coetficients” comes from the participation of
these numbers in the binomial formula:

(@a+b)"=Cln, Ma" + -+ Cln, Da" ™ b +- - + C(n, m)b".
Of the numerous properties of binomial coefficients, we concenirate on two:
Cn,l)=Cn—-1Lk=-D+Clrn—1%k forn>k>0 (8.3}

and
Cn,)=Cn,n)=1 {8.4)

The nature of recurrence {8.3), which expresses the problem of comput-
ing C{n, k) in terms of the smaller and overlapping problems of computing .
Cn—1,k—1) and C(n — 1, k), lends itself to solving by the dynamic program-
ming technique. To do this, we record the values of the binomial coefficients in
a table of n + 1 rows and & + 1 columns, numbered from 0 to » and from 0 to &,
respectively (Figure 8.1).

To compute C(n, k), we fill the table in Figure 8.1 row by row, starting with
row 0 and ending with row n. Each row [(0 < < n) is filled left to right, starting
with 1 because C(n, 0) = 1. Rows 0 through k also end with 1 on the table’s
main diagonal: C(f, i) = 1for 0 <i < k. We compute the other entries by formula
(8.3), adding the contents of the cells in the preceding row and the previous
column and in the preceding row and the same columa. (If you recognize Pascal’s
triangle-—a fascinating mathematical structure usually studied in conjunction with
the notion of a combination—you are right: this is exactly what it is.) The following
pseudocode implements this algorithm.,

o 1 2 k=1 k
0 1
7 1
2 1 2 1
k 1 1
n-1 11 Cln-1 k=1 Cin-1.4
A 1 Cin, &

FIGURE 8.1 Table for computing the binomial coefficient C(n, &} by the dynamic
programming algorithm

282

Dynarnic Programming

ALGORITHM Binomial(n, k)
/{Computes C(r, k) by the dynamic programming algorithm
/Maput: A pair of nonnegative integers n =k = 0
//Qutput: The value of C(n, k)
fori <~ Otordo
for j < O to min(, k) do
if j=00rj=1i
Cli, jl<1
else C[i, /]« C[i —1,j—1]+C[i —- 1, j]
return Cln, k]

What is the time efficiency of this algorithm? Clearly, the algorithm’s basic
operation is addition, so let A(n, k) be the total number of additions made by this
algorithm in computing C(n, k). Note that computing each entry by formula (8:3)
requires just one addition. Also note that because the first k + 1 rows of the table
form a triangle while the remaining » — k rows form a rectangle, we have to split
the sum expressing A(r, k) into two parts: :

k i—1 n k k n
A)=> Y"1+ Yo X 1= G-+ >k

i=1 j=1 i=k+1 j=1 i=1 i=k+1

_ S""‘zﬁ 4 k(n — k) € O(nk).

You are asked to ascertain whether this is an efficient algorithm by comparing it
with the running times of a few other algorithms for this problem in the exercises.
Another problem in the exercises is to analyze whether or not the extra space used

_ by the dynamic programming algorithm is actually necessary.

Exercises ﬁ%fﬁ

1. a. What does dynamic programming have in common with divide-and-
conguer?
b. What is a principal difference between the two techniques?
2. a. Compute C(6, 3) by applying the dynamic programming algorithm.
b. Is it also possible to compute C(n, k) by filling the algorithm’s dynamic
programming table column by columa rather than row by row?

3. Prove the following assertion made in the text while investigating the time
efficiency of the dynamic programming algorithm for computing C(r, k).

(k- Dk

5 + kin — k) € O(nk).

