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Abstract

Non-deterministic Constraint Logic is a family of graph games introduced by Demaine and Hearn
that facilitates the construction of complexity proofs. Itis convenient for the analysis of games,
providing a uniform view. We focus on the acyclic version, apply this to Klondike, Mahjong Solitaire
and Nonogram (that requires planarity), and discuss the more complicated game of Dou Shou Qi.
While for the first three games we reobtain known characterizations in a simple and uniform manner,
the result for Dou Shou Qi is new.

1. INTRODUCTION

Besides actually playing games, it is of great interest to know how hard these games are in the sense of com-
putational complexity, see Kendall, Parkes, and Spoerer (2008). The games are usually generalized to allow for
parameters that control board size, number of cards, etc.

In order to study the structural complexity of games, Hearn (2006) and Hearn and Demaine (2009) advocate the
use of the constraint logic framework. It consists of a collection of abstract graph games. The games are played
on a so-calledconstraint graph. A constraint graph is a weighted directed graph, where eachedge has a weight
in {1, 2}. The inflow of a vertex is defined to be the sum of all weights of the edges that are directed inward. A
configuration (i.e., direction of the edges) of a constraintgraph is legal if and only if for each vertex it holds that
the inflow is at least its minimum inflow, usually 2. A move of a player is typically the reversal of one of the
edges; players are only allowed to do moves that result in a legal configuration.

A notable feature of the constraint logic framework is the fact that constraint graphs can be reduced to equivalent
planar versions. Many real-life games are played on a 2-dimensional board. In previous game complexity results
(e.g., Culberson (1999), Flake and Baum (2002)) crossover gadgets are necessary to overcome the limitations of
such a 2-dimensional game board. Crossover gadgets are in general complex and hard to construct. The generic
crossover gadget for constraint logic, as presented in Figure 2 below, removes the need to devise a specific
crossover gadget for every single game.

Various games based on constraint graphs are defined in Hearnand Demaine (2009). These are categorized based
on the number of players and whether there is a bound on the number of moves. We will describe two of those:
Bounded Non-deterministic Constraint LogicandBounded Two-Player Constraint Logic. In particular we will
also pay attention to acyclic versions and planarity issues.

The remainder of this paper is organized as follows. First weexplain the different types of graph games. Next we
apply these to the games Klondike, Mahjong Solitaire, Nonogram and Dou Shou Qi.
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1.1 Bounded Non-deterministic Constraint Logic

Bounded Non-deterministic Constraint Logic (Bounded NCL)is a one-player game (i.e., a puzzle), played on a
constraint graph. A move is defined to be the reversal of one ofthe edges, resulting in a legal configuration, i.e.,
meeting the inflow condition of the vertices. Each edge may bereversed at most once. This puts an upper bound
on the number of moves in this game, i.e., the number of edges in the graph. One of the edges is defined to be the
target edge; the player wins if and only if (s)he is able to reverse the target edge.

(a) AND (b) OR (c) FANOUT (d) CHOICE

W

B

(e) VARIABLE

Figure 1: Basic vertices, based on Figure 5.2 and Figure 6.2 from Hearn (2006). Edges with a weight of2 use
thick lines and have double arrows; edges with a weight of1 use thin lines and have a single arrow. Usually these
edges are referred to as “blue” and “red”, respectively.

Theorem 5.1 and Theorem 5.2 from Hearn and Demaine (2009) show (using a reduction from the Boolean
satisfiability problem) that the game is NP-complete, even when the initial constraint graph only consists of
AND, OR, FANOUT and CHOICE vertices as shown in Figure 1.

1.2 Bounded Two-Player Constraint Logic

Bounded Two-Player Constraint Logic (Bounded 2CL) is a two-player perfect-information game played on a
constraint graph, and a partitioning of the edges in disjoint setsB andW . The players alternate turns. The white
player reverses edges inW ; the black player reverses edges inB. For both players it holds that their move has to
result in a legal configuration. Each edge may only be reversed once, which (as in Bounded NCL) puts an upper
bound on the number of moves in the game. One of the edges inW is defined to be the target edge. The white
player wins if (s)he is able to reverse this edge; if a player is unable to move, (s)he loses the game.

Theorem 6.2 from Hearn and Demaine (2009) shows that the gameis PSPACE-complete, even when the con-
straint graph only consists of the five vertices as shown in Figure 1, where the edges from AND, OR, FANOUT
and CHOICE vertices are all in the setW . Note that the black player can only play bottom edges in VARIABLE
gadgets. In order to avoid clear loss for black an ample amount of additional black edges is supplied.

1.3 Acyclic graphs and crossover gadgets

In order to planarize constraint graphs, the construction shown in Figure 2(a) can be used. A pair of crossing
edges can be replaced by this gadget. To obtain basic vertices as in Figure 1, each vertex with four red edges
can be replaced by the so-called half-crossover gadget, which is shown in Figure 2(b). Additionally, we need to
perform red-blue edge conversions, see Hearn (2006).

EdgesA andB are called thevertical external edges. EdgesC andD are called thehorizontal external edges. It
can be verified that each vertical external edge can point outward if and only if the other vertical external edge
points inward. A similar property holds for the horizontal external edges. The action of reversing both vertical ex-
ternal edges is calledvertical propagation; the action of reversing both horizontal external edges is calledhorizon-
tal propagation. For example, when the edgesA andB are pointing up, and the edgesC andD are pointing left,
the direction of all other edges follows from the inflow constraints. A sequence of, e.g.,(A,F,H,G,M,O,N,B)
would then perform a vertical propagation; a sequence of, e.g., (C,K, I, L, J,E, P,R,Q, S,D) would perform
a horizontal propagation.
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Figure 2: Planar crossover gadgets, as presented in Hearn and Demaine (2009).

Although this gadget indeed simulates all the behavior of the games introduced in, e.g., Hearn and Demaine
(2005) (where the same edge can be reversed multiple times) this is not the case for the constraint graphs used in
Bounded NCL and Bounded 2CL. After performing a vertical propagation, due to the restriction that each edge
may be reversed at most once, the gadget is in such a state thatit is impossible to perform horizontal propagation,
and vice versa. Although the construction in Figure 2(a) is valid, after integrating the construction of Figure 2(b)
for all the vertices with four red edges (in order to restrictourselves to the gadgets in Figure 1) it becomes clear
that this is no longer the case. After, e.g., edgesF andH (corresponding toa andb, respectively) are reversed,
it can be verified that due to the internal state of the half-crossover, edgesK andI (corresponding toc andd,
respectively) cannot be reversed anymore. The only way to perform both a horizontal and vertical propagation
over the same crossover gadget is when both a horizontal external edge and vertical external edge can be reversed
inward at the same moment: a typical example of arace condition. An extensive analysis of the properties of the
crossover and half-crossover gadgets as well as red-blue edge converters can be found in Hearn (2006) and van
Rijn (2012).

It is clear that not all constraint graphs can be reduced to a planar equivalent using solely the gadgets presented in
Figure 2. In some configurations, in particular in (initially) cyclic graphs, it is impossible to obey the additional
constraint imposed by the crossover gadget that the propagation of both directions has to happen at the same
moment. However, for acyclic graphs, this is never a problem. Edges can be topologically sorted, and reversed
in this order. The complexity proofs of both Bounded NCL and Bounded 2CL (see Hearn and Demaine (2009))
use graphs corresponding to logical formulas, which indeedrequire only acyclic graphs; hence Planar Bounded
NCL is NP-complete and Planar Bounded 2CL is PSPACE-complete. Note that all graphs under consideration
are acyclic in their initial configuration.

Theorem 5.4 from Hearn and Demaine (2009) states that the related problem Constraint Graph Satisfiability is
also NP-complete: does a given planar constraint graph, using only (initially undirected) AND and OR vertices,
have a legal configuration? Note that this strictly speakingis not a game in the above sense: we only ask for a
legal “final” configuration, not the sequence of moves that can be used to obtain it.

2. KLONDIKE

Klondike, also known as Patience or Solitaire, is a well-known card game, popularized by Microsoft Windows.
The normal version of the game is played with a standard French card deck, without jokers. Yanet al.(2004) have
given a formal definition of the game and provided an algorithm that plays Klondike games with a high success
rate; in their version of the game, often referred to as thoughtful Solitaire, the identity of all cards is known
from the beginning. Several other approaches have been proposed to deal with Klondike, see, e.g., Bjarnason,
Tadepalli, and Fern (2007) and Bjarnason, Fern, and Tadepalli (2009).

Longpŕe and McKenzie (2009) have shown, amongst other complexity results, that Klondike is NP-complete even
when played with two red suits and one black suit: red diamonds (♦), red hearts (♥) and black spades (♠). We
will give a formal definition of the necessary subset of Klondike and confirm the NP-completeness of Klondike
by a reduction from Acyclic Bounded NCL, using an argument improved upon the one from van Rijn (2012).
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2.1 Definition

Generalized Klondike is played with a card deck containingm suits, each suit containingn cards ranked from
1 to n. A card with rank1 is also referred to as anAce; a card with rankn is also referred to as aKing. The
functionsrank(c) andsuit(c) return the rank and the suit of cardc, respectively. Each suit is colored either red
or black. The functioncolor(s) returns the color of suits.

A Klondike game consists ofm suit stacks, one or morebuild stacks, apile stackand atalon. In the sequel we do
not need pile stack and talon, so these will be omitted from the description. A stack is defined to be an ordered
list of cards. Aconfigurationdescribes for each card in which stack it is and on which position. For every card in
a build stack it also describes whether the card isface-upor face-down. The subset of cards that are face-up on
a certain build stack constitute acard block, and will always consist of topmost cards. In an initial configuration
all cards are face-down in the build stacks (that can be of different lengths), and the suit stacks are empty.

We will define the notion ofacceptance, which determines which moves the player can make. Each suitstack
that is empty can only accept an Ace. Every suit stack that is not empty, containing cardt on top, accepts card
c if and only if suit(c) = suit(t), andrank(c) = rank(t) + 1. Therefore, suit stacks accept cards of the same
suit in ascending order. Each card block that is not empty, containing cardt on top, accepts cardc if and only if
color(suit(t)) 6= color(suit(c)) andrank(c) = rank(t)− 1. Therefore, build stacks accept cards in descending
order, of alternating colors. We will not employ the usual property that an empty build stack (only) accepts a
King.

On each turn, the player can play cards in the following manner:

1. If all cards on a build stack are face-down, the card on top can be turned face-up, thereby creating a
singleton card block.

2. A whole card blockp can be moved to the top of another card blockq, provided thatq accepts the card at
the bottom ofp. (In some versions of the game a partial card block can also bemoved in this manner.)

3. The top cardc of a card block can be moved to a suit stack, provided that the suit stack acceptsc.

The goal is to move all cards to the suit stacks, and when this is achieved the player has won.

2.2 NP-completeness

In order to prove NP-completeness, we will show that every Acyclic Bounded NCL graph can be transformed to
a Klondike configuration, in such a way that the Klondike gamecan be won if and only if the target edge of the
Acyclic Bounded NCL graph can be flipped. So we study the corresponding decision problem KLONDIKE: given
a Klondike configuration, can the player win?

We will use the four gadgets from Figure 3. The gadgets consist of one, two or three build stacks, with all cards
initially face-down. Each gadget gets a range of unique ranks assigned to it; for simplicity, in the figure we use
the range 5–8 for all gadgets. Alock cardrepresents the tail of an edge adjacent to the correspondingNCL vertex;
a lock icon is displayed on these cards. Akey cardrepresents the head of an edge adjacent to the corresponding
NCL vertex; a key icon is displayed on these cards. The rank ofeach key card is within the range of another
gadget. The suit and rank of a key card is chosen such that onceturned face-up, it accepts a lock card of the
gadget from which the corresponding NCL edge is pointing (locks must be moved to their keys). The gadgets are
constructed in such a way that the key card can be turned face-up if and only if the corresponding NCL edge can
be flipped. Note that in the AND gadget♠5 is also a lock card (without having a lock image).

For each lock cardℓ it is easy to see which card should be turned face-up in order to move it. Ifcolor(rank(ℓ)) is
red, this card is♠(rank(ℓ) + 1), and otherwise it is♥(rank(ℓ) + 1) (the card♦(rank(ℓ) + 1) will be only made
available during the end play, or in the case of the OR gadget is positioned deeper within the gadget). These cards
serve as key cards in other gadgets.

Now we note that the four gadgets indeed act as intended. For instance, consider the OR gadget. In order to turn
the key card face-up, either the lock card♠6 (followed by♦5) must be moved to its corresponding key card♥7,
or the lock card♥6 (followed by♠5) must be moved to its corresponding key card♠7 after which♠6 and♦5
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Figure 3: Klondike gadgets. Note that♠5 in the AND gadget is also a lock card.

can be moved to♦7. If both key cards are available, both sequences can be played. The AND gadget has a fixed
order to free the key card, which is sufficient for our purpose.

Now we have:

Theorem 2.1 KLONDIKE is NP-complete.

Proof Reduction from Acyclic Bounded NCL. Given a constraint graph made of AND, OR, FANOUT and
CHOICE vertices, we construct a corresponding Klondike configuration using the gadgets shown in Figure 3.
Note that planarity is not an issue both here and for Mahjong.

We need a way to ensure that the player can move all cards to thesuit stacks if and only if the key card corre-
sponding to the target edge can be turned face-up. To this end, all cards not used in the gadgets are positioned
in one big build stack (ordered by rank and within each rank in♦♥♠ order, with the three Aces at the top and
ending with the three Kings at the bottom), protected by a lock card representing the target edge. Once this card is
moved, all these other cards become available and allow all cards from all gadgets to be moved to the suit stacks.

Now the fact that the original NCL graph is acyclic is used. Indeed, the gadgets can be numbered, using a
topological sort of the corresponding nodes, and we can takecare that for every gadget the key cards used have
higher rank than the cards in the gadgets. This ensures a proper order for this part of the process. In fact, even
(partially) unplayed gadgets can be “discarded”, using theinductive assumption that all cards of lower ranks have
already been moved to the suit stacks. Note that, if for the ORgadget♥5 were used instead of♦5, this property
would not hold.

For creating the Klondike configuration, the number of cardsand stacks we need are both bounded by a linear
function of the number of vertices in the corresponding NCL graph. In a winning sequence there are exactlymn
moves of type 1, andmn moves of type 3. As for the type 2 moves, there are at mostmn of them: every card
block is moved once (when focussing on its bottom card), maybe to a suit stack. Therefore Klondike is in NP,
since any potential solution can be verified in polynomial time. �

3. MAHJONG SOLITAIRE

Mahjong Solitaire, also known as Shanghai Solitaire, is a one player puzzle game mainly played on the computer
in which the player is presented with a randomly arranged stack of tiles. The goal is to remove all tiles in matching
pairs of two. Condonet al. (1997) have given a formal definition of this game, and have shown that a version
of this game with imperfect information is PSPACE-complete. Eppstein (2012) has stated a proof that a version
of this game with perfect information is NP-complete. In thepaper by de Bondt (2012) Mahjong is proven to
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be NP-complete by a reduction from 3-SAT. We will give a formal definition of this game and validate the latter
result by a reduction from Acyclic Bounded NCL.

3.1 Definition

The game uses Mahjong tiles, that are divided intom disjoint tile setsTp of |Tp| = sp matching tiles, wheresp
is an even number (p = 1, 2, . . . ,m). We define the set of all tiles to beT =

⋃
p Tp. Two tilesa andb match,

if and only if for somep it holds thata, b ∈ Tp. Below we say that elements of the same tile set have the same
color. We generalize the standard game simply by assuming that there is an arbitrarily large, finite number of
tiles. A configurationC is a set of positions(i, j, k), where each ofi, j, k is a non-negative integer, satisfying the
following constraints:

1. If (i, j, k) ∈ C and(i, j′, k) ∈ C wherej < j′, then for everyj′′ in the range [j, j′], (i, j′′, k) ∈ C;

2. If (i, j, k) ∈ C wherek > 0 then(i, j, k − 1) ∈ C.

This captures the fact that tiles are arranged in three dimensions. Tiles can be stacked on top of each other; all
tiles with commonk are at the same height. All tiles with a commoni index, form across section. Tiles at the
same height, with commoni index, form arow. The first condition ensures that there cannot be gaps in a row; the
second, that a tile at heightk > 0 must have a tile underneath it (in fact, at position(i, j, k − 1)).

With respect to a given configuration, a position(i, j, k) is hiddenif in the configuration also a position(i, j, k+1)
exists; the other positions are calledvisible. An arrangementconsists of a set of tilesT , a configurationC of
size|T |, and a bijective functionf from the positions ofC toT . Heref(i, j, k) denotes the tile at position(i, j, k).
If the functionf maps position(i, j, k) to tile t we saypos(t) = (i, j, k). The elements ofT will be mapped to
the elements ofC in such a way, that every combination is possible. With respect to a given arrangement, we say
a position(i, j, k) is availableif it is not hidden, and either position(i, j−1, k) /∈ C or position(i, j+1, k) /∈ C
or both, i.e., we can only take tiles that are at one of the endsof a row, and that have no tiles on top of it. An
arrangement is called empty ifT is empty. In order to avoid misunderstandings, all tiles canbe seen from the
beginning: the player has perfect information.

A legal move consists of the removal of two matching tilesa, b that are both available. Formally,T ′ = T −{a, b}
andC ′ = C − {pos(a), pos(b)}. The game is won if a series of moves results in the empty arrangement.

3.2 NP-completeness

In order to prove NP-completeness, we will show that every Acyclic Bounded NCL graph can be transformed
to a Mahjong configuration, in such a way that the Mahjong gamecan be won if and only if the target edge of
the Acyclic Bounded NCL graph can be flipped. We study the decision problem MAHJONG SOLITAIRE: given a
Mahjong configuration, can the player win?

We will use the gadgets in Figure 4. The gadgets consist of onecross section containing between two and five
tile stacks, with different numbers representing different tile sets. Every gadget has a unique range of numbers.
Again, for simplicity, in the figure we use the range 1–7 for all gadgets. Alock tile represents the tail of an edge
adjacent to the corresponding NCL vertex; a lock icon is displayed on these tiles. Akey tilerepresents the head of
an edge which is adjacent to the corresponding NCL vertex; a key icon is displayed on these tiles. Corresponding
key and lock tiles from different gadgets share the same number, for obvious reasons.

When a key tile is available, it can be removed together with a lock tile from one of the other gadgets. The target
edge in the corresponding NCL graph is always represented bya key tile. When this target edge is available this
will initiate the end game, which is always winning for the player as we will show further on.

The four gadgets in Figure 4 have their intended behavior. For instance, consider the CHOICE gadget. To free
either one of the key tiles the lock tile has to be removed. Now, the actual choice has to be made: the newly freed
“3-tile” must be used to remove either the leftmost or rightmost “3-tile”. After removing both “4-tiles” precisely
one of the key tiles is available. Note that the gadgets resemble those for Klondike; in fact, the AND gadget can
also be modeled to look even more like its counterpart.
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Figure 4: Mahjong gadgets as a cross section of a configuration.

Now we have:

Theorem 3.1 MAHJONG SOLITAIRE is NP-complete.

Proof Reduction from Acyclic Bounded NCL. Given a constraint graph made of AND, OR, FANOUT and
CHOICE vertices, we construct a corresponding Mahjong configuration using the gadgets shown in Figure 4.

In order to have a way of clearing all remaining tiles after the target tile is removed, we supply a victory gadget
consisting of one linear row of tiles with two “5-tiles” for every CHOICE gadget. The victory gadget itself is
protected in a similar way as the FANOUT gadget: a pair of matching tiles is placed at both sides, and a tile
matching the target tile is placed on the left one of these. This ensures that none of the tiles in the victory gadget
can be used before the tiles representing the target edge areremoved. Again, we will use the fact that the original
NCL graph is acyclic by numbering the gadgets using the topological sort of the corresponding vertices. This
ordering defines the proper order for this process allowing partially unplayed (CHOICE) gadgets to be removed
by using the tiles from the victory gadget, that are placed inthis same order. Note that from this acyclicity it
follows that when the player is able to remove all CHOICE gadgets, all other (partially) unplayed gadgets can
also be removed.

Both the number of tiles and the number of tile sets we need to use is linearly bounded by the number of vertices
used in the corresponding Acyclic Bounded NCL graph. Therefore Mahjong Solitaire is in NP, since any potential
solution can be verified in polynomial time. �

4. NONOGRAM

A Nonogram, also referred to as a Japanese puzzle, is a logic puzzle which can be considered as an image recon-
struction problem. The player is presented a rectangular grid; for each row and column a description consisting
of one or more integers is provided, representing the numbers of consecutive cells that need to be black. If the
player can color a subset of cells in such a way that it is consistent with the description of all rows and columns,
(s)he has solved the puzzle and won the game. An example of a Nonogram and its solution is shown in Figure 5.
Batenburg and Kosters (2012) have given a formal definition of Nonograms and provided an algorithm for solv-
ing many Nonograms in polynomial time. In Nagaoet al. (1996) it is proven that the Another Solution Problem
for Nonograms is NP-complete, and more in particular that the question whether a given puzzle has a solution is
NP-complete. We will also give a formal definition of Nonograms and show that the latter decision problem
is NP-complete, by reduction from Constraint Graph Satisfiability.
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Figure 5: An example Nonogram (a) and its unique solution (b), taken from Batenburg and Kosters (2012).

4.1 Definition

A Nonogram is a puzzle in which the player is presented anm × n grid of cells, consisting ofm rows andn
columns. The state of a cell is eitherwhite = 0 or black = 1. Initially, all cells arewhite. A line is defined to be
either a row or a column.

For each line a descriptiond is provided,d being an ordered series of integers(d1, d2, . . . , dk). The description
is adhered to, if there are exactlyk black segmentsin the line, where each successive black segments is of size
ds (s = 1, 2, . . . , k). A black segment is defined to be a group of consecutive cellsin the line, such that all
cells within the interval areblack , and both cells adjacent to the interval, if any, arewhite. Now the puzzle is
solved if the player can make a subset of the cells black, in such a way that all descriptions are adhered to. The
corresponding decision problem NONOGRAM asks if a given Nonogram can be solved. For more information on
Nonograms, the reader is referred to Batenburg and Kosters (2012) and the references therein.

4.2 NP-completeness

We will show that solving Nonograms is NP-complete, by reduction from Constraint Graph Satisfiability (Hearn
and Demaine (2009)), only using two initially undirected gadgets: AND and OR. The global layout of the con-
struction will be as in Figure 6. There will be several groupsof D adjacent columns (or rows) where the de-
scription consists of a single element, i.e.,m (or n), such that the pattern of Figure 6 is maintained. We call
these lines theseparation lines. Between each group of separation lines, there areG other lines. In the case of
Figure 6,D = 5 andG = 7. The descriptions and the width of the delimiters will not interfere with those of the
single elements in between. As a result of this constructionwe can specify disjointsubnonogramsbetween the
separation lines.

It is also possible to send a signal between two orthogonal adjacent subnonograms by slightly adjusting delimiters
between them. This is illustrated in Figure 7. The figure shows two subnonograms separated byD = 3 separation
lines; one subnonogram between cells(1, 1) and(4, 4), inclusive, and one subnonogram between cells(1, 8) and
(4, 11), inclusive. If we were to decide that(3, 4) should beblack , this would explicitly mean that cell(3, 8)
cannot beblack . (Note that this would also explicitly mean that(2, 8) is black , and(2, 4) is not black .) The
opposite is also true. We will use this property to constructgadgets within a subnonogram, and propagate signals
between them. This way we can embed a constraint graph on a Nonogram grid.

In Figure 8 a template of the gadgets is shown. From the description of every gadget follows immediately that the
black cells must beblack and the dotted cells must bewhite. The state of the other cells is dependent on the type
and state of the gadget.

The gadgets are shown in Figure 9 and haveG = 7. As it does not influence the functionality, on each side
these are surrounded by only one separation line. (In the large construction we will useD = 5, with obvious
adaptations of the descriptions.) These are alreadyblack . If a cell corresponding to an edge iswhite, this means
that the edge is pointing away from the vertex, and vice versa. Besides AND and OR gadgets, we also provide
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Figure 7: The two solutions of a Nonogram featuring two subnonogramshorizontally separated by3 separation
lines.
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Figure 8: Template for Nonogram gadgets. Squares that are black are black in all instances; squares with a dot
are white in all instances.

two gadgets needed for wiring.

The three cells marked witha, b andc correspond with the edges; for the (initially undirected) AND gadgeta and
b correspond with the “red” ones. Given the values for the cells corresponding to the edges, the gadgets are within
the so-called “simple” Nonogram class, and can be easily solved. For a definition and solving algorithm of the
“simple” nonograms, the reader is referred to Batenburg andKosters (2012). In any case, the solutions can be eas-
ily verified. They are uniquely characterized by(a, b, c) ∈ {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)} (AND
gadget) and(a, b, c) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)} (OR gadget), implying
that the gadgets indeed perform as desired. If(a, b, c) = (1, 0, 1), the OR gadget has two solutions, making use
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Figure 9: Nonogram gadgets.

of a so-called switching component.

Now we have:

Theorem 4.1 NONOGRAM is NP-complete.

Proof We can simulate a planar constraint graph with only AND and ORnodes on a Nonogram grid using the
global layout of Figure 6 and the two top gadgets shown in Figure 9. The two bottom gadgets from Figure 9 can
be used for wires, in a straight line or as a corner. Now the arrows can be inserted in a legal way if and only if the
resulting Nonogram can be solved.

Di Battistaet al. (1994) have proven that a graph with maximal degree 3 can always be stored in a square grid
of width v, wherev is the number of vertices contained by the graph. This ensures that the number of rows and
columns used in our reduction is bounded linearly by the number of vertices in the corresponding NCL graph.

NONOGRAM is clearly in NP, as any potential solution can be verified in polynomial time. �

5. DOU SHOU QI

Dou Shou Qi(meaning: “Game of Fighting Animals”), as described by Pritchard and Beasley (2007), is a Chinese
board game. In the Western world it is often called Jungle, The Jungle Game, Jungle Chess, or Animal Chess.
Dou Shou Qi is a two-player abstract strategy game and it contains some elements from Chess and Stratego as
well as some other chess-like Chinese games (e.g., Banqi). Its origins are not entirely clear, but it seems that it
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evolved rather recently (around the 1900s). It has been suggested by some that the game often ends in a draw, but
preliminary results from van Rijn and Vis (2013) show a remarkably low percentage of draws.

The game Dou Shou Qi is not extensively studied in literature. In Burnett (2010), a definition of the game is
given and an attempt is made to characterize certain local properties of subproblems that occur when analyzing
the game. These so-called loosely coupled subproblems can be analyzed separately in contrast to analyzing the
problem as a whole, resulting in a possible speed-up in the overall analysis. A first complexity result has been
obtained by van Rijn and Vis (2013). Dou Shou Qi is proven PSPACE-hard by reduction from logic circuits. Here,
we will prove Dou Shou Qi to be PSPACE-hard by reduction from Planar Bounded 2CL based on the reduction
given by van Rijn (2012).

We cannot prove Dou Shou Qi to be PSPACE-complete; as an unbounded two-player game it is probably not in
PSPACE. Dou Shou Qi is clearly in EXPTIME — like Chess.

5.1 Definition

Dou Shou Qi is played on a rectangular board consisting of9 × 7 squares, see Figure 10. There are several
different kinds of squares. Thedens(D), one for each player, are located in the center of the firstand last row
and are protected on all sides bytraps(T). Furthermore, there are two bodies of water (W), while theremaining
squares are ordinary land squares.

Each players has eight different pieces representing different animals with a respectivestrength, according to
which they cancapturesome of the opponent’s pieces. Pieces can only capture a piece of equal or lower strength,
with the exception of the weakest piece which is able to capture the strongest piece. The strength of the animals
from weak to strong is: 1 rat, 2 cat, 3 wolf, 4 dog, 5 panther, 6 tiger, 7 lion, 8 elephant. The initial placement
of the pieces is fixed, see Figure 10. Players alternate turnswith white moving first. Each turn a piece must be
moved either one square horizontally or vertically. Piecesare forbidden to enter their own den and are usually
blocked by water. The rat is the only piece able to move through the water where it is also capable of capturing,
i.e., the enemy rat, but it is forbidden to capture an elephant while attacking from the water. Lions and tigers are
able to leap over water either horizontally or vertically, but they are blocked by any rat on the intermediate water
squares.

7 T D T 6

4 T 2

1 5 3 8

W W W W

W W W W

W W W W

8 3 5 1

2 T 4

6 T D T 7

Figure 10: A schematic Dou Shou Qi game board showing the initial position.

Pieces can be trapped by the traps surrounding the opponent’s den: their strength is effectively reduced to zero,
meaning that they can be captured by any enemy piece. The objective of the game is to place a piece in the
opponents den or to eliminate all of the opponent’s pieces. Astalemate position is declared a draw.
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5.2 PSPACE-hardness

The Bounded 2CL graph will be simulated on am × n board, where both players havek pieces. Whether a
natural generalization of the game would imply that thek pieces all have a strength from the interval[1, 8] or a
distinct strength from the interval[1, k] is open for discussion. In our reduction all pieces have a strength from the
interval[2, 5], excluding all pieces with special capabilities. The original game board contains several properties,
i.e., clustered water squares, narrow paths between the water, traps surrounding the dens, which are symmetrical
and highly regular. Which of these properties should be preserved on a generalized game board is open for debate,
however in our reduction we took the liberty of using water squares and traps freely in the gadgets.

We will show a complexity proof for the decision problem DOU SHOU QI: given a Dou Shou Qi position, does
the player on turn have a forced win?

W W W W
W T W
W T 2 T W
W T W
W 5 W
W T W
W T 2 T W
W T W
W W W

(a) AND gadget

W W W W
W T W
W T 2 T W
W T W
W 5 W
W T W
W T 2 T W
W T 4 W
W W W

(b) OR gadget

W W W W
W W
W T 3 W
W 4 T W
W W W W W

(c) FANOUT gadget

W W W
W W
W W W W

(d) CHOICE gadget

W W W W
W W
W 4 W
W 4 W
W W W W

(e) VARIABLE gadget

Figure 11: Dou Shou Qi gadgets.

We will reduce from Planar Bounded 2CL. The main gadgets are shown in Figure 11. The reversal of an edge
in the original Bounded 2CL graph will be modeled as the movement of a white dog (strength 4) into another
gadget. The VARIABLE vertex (in its initial state) can be reversed by the current player. The same is true for the
VARIABLE gadget. Since both pieces are of the same strength,the current player can capture the piece of the
other player, and move its piece through to the next gadget.

There are some additional issues that need to be addressed. First, white dogs that enter a gadget should not be
allowed to go back into the previous gadget. Next, white dogsin a FANOUT gadget should not be allowed to
move through the same exit twice. Finally, black pieces in a VARIABLE gadget should not be allowed to leave
the gadget through the exit corresponding to the white edge in the graph game. In order to prevent this behavior,
we have created some additional support gadgets, that will be attached to the inputs and outputs of the gadgets.
These are shown in Figure 12.

The construction shown in Figure 12(a) is called ablack edge protector. The white player can move a dog from
bottom to top, but not the other way around. When a white dog enters the construction, the black piece will retreat
behind either the left trap or the right trap, and the white dog can pass. When passed, the black piece moves back
to its original position. The white piece cannot move back, it would be captured when entering the traps. The
construction shown in Figure 12(b) is awhite edge protector, it allows only white pieces to pass. Black pieces
can be captured upon entering a trap. Note that these constraints do not apply when the opposing player attacks
from both sides. We will show further on how to deal with this.The construction in Figure 12(c) is an outflow
protector, with the left entrance square as input and the right entrance square as output. It ensures that upon arrival
of either one or two white pieces, only one can pass.

A chain of two white edge protectors, one black edge protector and another two white edge protectors is called
a one-way channel. First, it ensures that no black piece can move through it. Itwill be captured upon entering a
white edge protector. After a capture, the white cat can resume its position, preventing black pieces from passing,
regardless of their number. Because it is always adjacent toanother white edge protector, even an attack from
both sides is useless. Next, it ensures that all black pieceswithin are unable to move out of the construction they
started in, by the same argument. Finally, linking several one-way channels to each other ensures that white pieces
can move through it in only one direction. White pieces that move in the opposite direction will be stopped at the
black edge protector. Indeed, when having a piece at both theinput and the output, the white player can enable
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W W W W W W
W W W W
W W W W W
W T 3 T W
W W W W W W

(a) Black edge protector

W W W W
W T W
W T 2 T W
W T W
W W W W

(b) White edge protector

W W W W W W W W W
W T T W

T 2 T 5 T 2 T
W 4 T T W
W W W W W W W W W

(c) Outflow protector

Figure 12: Constructions used to support gadgets.

its piece at the output to move back through this gadget. However, in order to pass a number of subsequent black
edge protectors, the white player needs an equal number of white dogs at the input to ensure such a passing. There
can never be more than two white pieces at the input of a one-way channel, thus linking three one-way channels
together prevents white pieces from moving into the forbidden direction. A gadget protector is a chain of three
one-way channels, one outflow protector and another three one-way channels. The gadget protector is attached to
every entrance of the gadgets shown in Figure 11, ensuring that these facilitate exactly the same behavior as their
equivalents in the graph game.

Now we have:

Theorem 5.1 DOU SHOU QI is PSPACE-hard.

Proof Reduction from Bounded 2CL. Given a planar constraint graphmade of AND, OR, FANOUT, CHOICE
and VARIABLE vertices, we construct a corresponding Dou Shou Qi game board where the white player has a
forced win if and only if (s)he has a forced win on the originalBounded 2CL graph; otherwise the black player
has a forced win. Note that there are no draws in Bounded 2CL, neither are there in the reduction by optimal play.

The target edge will be represented by a gadget containing a black den, and it will have a black edge protector
(Figure 12(a)) in front of it, preventing other pieces than the white dogs from entering it. The white player can
move a piece into this gadget if and only if (s)he can set the corresponding Bounded 2CL graph to true. The black
player is given a piece that can move straight to the white den. This will take him so many moves, that if the
corresponding Bounded 2CL graph can be set to true, by the time (s)he reaches it the white player has already
won the game. �

6. CONCLUSIONS

We reduced Acyclic Bounded NCL to KLONDIKE and MAHJONG SOLITAIRE and (planar) Constraint Graph
Satisfiability to NONOGRAM, proving them to be NP-complete. By using the acyclic property to our advantage,
we were able to keep the reductions elegant and easy to understand. For games that require to return to an “empty”
configuration (like Klondike and Mahjong Solitaire) acyclicity is even technically essential. We acknowledge the
NCL framework to be well-suited for reductions for games, but it is not without drawbacks. Often the primary
gadgets are relatively easy to construct, while the construction of victory gadgets is sometimes less trivial. Finally,
we reduced Planar Bounded 2CL to the game of Dou Shou Qi proving it to by PSPACE-hard. The generic
planarization of the NCL graphs and 2CL graphs is very usefulfor reductions to games played on a 2-dimensional
board. As an unbounded two-player game Dou Shou Qi is expected to be EXPTIME-complete in the classification
by Hearn and Demaine (2009). It is an open problem to construct the Dou Shou Qi gadgets for the special vertices,
e.g., multiplayer AND, that build the relevant 2CL graph.
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