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Abstract

Tomography tries to reconstruct an object from a number of projections in multiple directions. There are
many obvious application domains, but we will focus on high throughput applications, and will therefore
try to reduce the number of necessary projections, while being able to generate good quality reconstruc-
tions. We apply several forms of Neural Networks, an Artificial Intelligence method. These networks are
especially suited for solving underdetermined problems, and thereforewell suited to our problem.

Many different variants of Neural Networks are developed since its introduction; some simple, while
other architectures can consist of many nodes in many hidden layers increasing the training complexity.
We will here focus on the simpler forms of Neural Networks: feedforward (multilayer) perceptrons.

We show, for both artificial and real-life data, that these networks are capable of creating good quality
reconstructions from a limited set of projections, while avoiding image artifacts that are often present in
traditional approaches.

1 Introduction

Tomography, or more especially computed tomography, is a technique used in a broad variety of research
areas: from medical to industrial, and archaeological to material studies. It can be applied to investigate
(non-invasively) the internal structure of many differenttypes of objects and materials. Probably the most
recognized application is the X-ray CT scanner, for diagnostic purposes, as is found in many hospitals. The
main idea of tomography is to be able to visualize and analyzethe internal structure of an object.

The object is examined in various orientations leading to so-calledprojections, and when put together,
a reconstruction is made. Typically, there is a need for a large number of projections (more than 100) to
reconstruct, with adequate quality, an object. This approach, however, has many drawbacks. In areas where
a high throughput is required the time needed to generate theprojection data is limited, and when examining
organic tissue only a limited dose of radiation might be administered without the risk of affecting the tissue.
Therefore, we notice a need of good quality reconstructionsbased on a limited set of projections.

Figure 1: Examples of tomographic reconstructions. From left to right: original128 × 128 image, filtered
back projection reconstruction, linear perceptron, and multilayer reconstruction with 8 projection angles.

Traditional reconstruction methods tend to generate better quality reconstructions when increasing the
number of projections. Furthermore, they are static and general, i.e., they cannot be adapted to a specific ap-
plication domain. Here, we propose a different strategy. Weapply Neural Networks, an Artificial Intelligence



method [12, 5], for generating reconstructions. In Figure 1some examples of tomographic reconstructions
are shown. Neural Networks must be trained (which implies a one time increase in effort), but carry the ad-
vantage of being capable of reconstructing specific images,and improving themselves. In this paper we show
the potential of single-pixel networks for this purpose, inparticular for situations with very few projection
angles, also reducing image artifacts.

The paper is organized as follows. Section 2 contains related work. In Section 3 we introduce the theory
of (discrete) tomography. Section 4 describes the various Neural Network topologies and approaches. We
present the experiments in Section 5 and the conclusions to the study in Section 6.

2 Related Work

Computed tomography is a well studied field, and there are many publications describing many of its aspects.
In [8, 9, 4, 7] the fundamentals of computed tomography, as well as many technical aspects are covered.

The application of Neural Networks is a relatively new approach. In literature they are introduced as
a reconstruction technique in [10, 11]. In general, Neural Networks seem an uninteresting strategy for
the general problem of tomography due to their nature of dealing with large numbers of projections, and
consequently the large number of variables. It seems quite hard to outperform traditional reconstruction
techniques. However, we will here focus on tomography problems consisting of a small set of projections
resulting in an underdetermined problem. Neural Networks are well-known for their successful application
to underdetermined problems.

In [2, 3, 1] the authors introduce Neural Networks successfully for reconstruction binary images (i.e.,
black and white). Two different network topologies are investigated: a full-image network, and a single-pixel
network. The first variant tries to reconstruct a complete image at once from all projection data. The second
variant reconstructs one pixel from a selection of the projection data. Based on their conclusions we will
here focus on the single-pixel network topology. The networks used in [3] are quite large, consisting of 50–
200 hidden nodes. Here, we will use much smaller networks. The disadvantage of applying a single-pixel
network is its reduced ability to be trained for specific image classes. This property is, to a much greater
extend, available in full-image networks at the expense of increased computational complexity.

3 Tomography

In tomography, we try to reconstruct an object from a number ofprojectionsin multiple directions. Here,
we will focus on projections obtained by parallel beams through a finite object. We assume that this object
is contained in the disc

A =
{
(x, y) ∈ R

2 : x2 + y2 ≤ R2
}

(1)

with radiusR > 0, see Figure 2. The object is an image described by the real-valued grayscale mapping
f : A → [0, 1] where0 is black and1 is white; intermediate values can be interpreted as shades of gray.
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Figure 2: The basic principle of
tomography. The hatched area
only defines the outline of the
object, and not its internal struc-
ture.

The attenuations of the beams are measured on an infinitedetector.
Different projections are generated by rotating the detector around the
object. The construction of the projections is performed bythe so-called
Radon transform, which is the integral transform of the functionf over
straight linesL:

Rf (L) =

∫

L

f (ℓ) dℓ. (2)

For angleθ we define:Lθ,τ = {(x, y) ∈ A : τ = t}, with t = x cos θ +
y sin θ. The Radon transformPf of the functionf is defined as:

Pf (θ, τ) =

∫

Lθ,τ

f (x, y) ds for θ ∈ [0, π) , τ ∈ R. (3)

The reconstruction of the original image from its projections is ob-
tained from applying theinverse Radon transform[6]:

f (x, y) =

∫ π

θ=0

∫
∞

τ=−∞

h (τ − t)Pf (θ, τ) dτ dθ, (4)



whereh is a suitable weight orkernelfunction acting as a filter. Several kernel functions can be used. Often
the so-calledRam-Lakkernel, only defined in the integer domain, orrampfilter is applied:

h (σ) =







π
4

if σ = 0,

− 1

π2σ2 if σ is odd,

0 otherwise,

(5)

whereσ ∈ Z. Note that the kernel is symmetric around0, as expected, see Figure 7(b) in Section 5.

Discrete tomographyfocuses on the reconstruction of images, which are reconstructed using a small,
discrete set of pixel values, e.g., a binary image.

To find a discrete approximation, we substitute the integrals for summations. First, we choose a fixed
number of anglesk (equally dividing the0 to π semicircle). And secondly, we approximate the remaining
integral by choosing a finite detector size,D, soh (τ ′) = 0 when|τ ′| > D, whereτ ′ = τ − t:

f (x, y) =

D∑

τ ′=−D

h (τ ′)

k∑

d=1

Pf (θd, τ
′ + t) . (6)

In tomography the calculation of Equation (6) is usually performed by thefiltered back projectional-
gorithm. In practical applications, filtered back projection is implemented by calculation via thefrequency
domain, or more especially theFourier domain. In the Fourier domain, the convolution operator translates
to a much simpler multiplication, and therefore reduces thecomputational complexity.

Here, we will not use the Fourier domain, but rather calculate the convolution of the kernel with the
projection data in thespatial domain. As is suggested in Equation (6) we choose the kernel to be static,
and consequently shift the projection data relative to the center of the kernel. Therefore we introduce ashift
operatorwhich aligns the projection data for a certain image pixelx, y with correspondingτ ′, and a certain
angleθd. The shift amount is denoted byt. This implies, on a finite detector, that some projection data will
be shifted outside the detector range, and some “new” projection data is shifted onto the detector. We will
deal with this phenomenon as follows: the data shifted out ofrange is discarded, and the new data is treated
as being0, as it would be on an infinite detector.

Some difficulties arise in applying the discrete version of the Radon transform. In general, a pixel will
not be mapped to a single pixel on the detector, it will instead be mapped between two pixels. Now, we have
to decide how the image pixel will contribute to the possiblepixels on the detector. Several strategies can
be applied. Roughly, they can be divided into two categories. First, a single pixel on the detector receives
the full contribution of an image pixel, for example, thenearest neighborapproximation. Secondly, we can
distribute the contribution of an image pixel over the detector pixels, as is, for instance, done bylinear
interpolation.

In order to increase the accuracy of the projections further, and, ultimately, the quality of the reconstruc-
tion, we apply asubsamplingtechnique. This strategy is especially beneficial for images of small dimen-
sionality. Each pixel is divided intom × m subpixels, wherem is thesampling rate, with integerm > 1.
Typically,m = 2 orm = 3. Each subpixel is then projected onto the detector.

4 Neural Networks

An (Artificial) Neural Networkis a computational model that is inspired by the structure ofa biological
neural network such as the human brain [12, 5]. It consists ofinterconnected neurons passing information
to each other. The structure is often adaptive based on internal or external data. This concept is referred to
as learning. Many different forms exist today. Here, we will first focus on a simple form of a feedforward
network called aperceptron.

4.1 Topologies

The computational properties of a linear perceptron, see Figure 3(a), show a remarkable similarity with the
computations in Equation (6). We expect a linear perceptronto be able to simulate these computations. The
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~a=ΣPr

(a) Linear perceptron withN input nodes, and
one output node. The total number of weights
is N + 1. The bias node and weight are not
depicted, but assumed to be present within the
output node.
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︸ ︷︷ ︸

~a=ΣPr

(b) Multilayer perceptron withN input nodes,
h hidden nodes, and one output node. The total
number of weights ish (N + 1) + h + 1 (in-
cluding weights for the bias nodes). The bias
nodes and weight are assumed to be present in
each hidden and output node.

Figure 3: Two Neural Network topologies. Left: a linear perceptron and right: a multilayer perceptron.

weights should form the kernel function, and, for many projections, we expect the weight vector to be very
similar to the Ram-Lak kernel.

The first topology consists of only one output node capable ofreconstructing one pixel of the image. In
order to reconstruct the complete image we apply the perceptronN2 times. The input for reconstructing a
single pixel is heavily dependent on that pixel. Therefore,we preprocess the Radon projection data depend-
ing on a certain pixel. The projection data is “shifted” suchthat the projection is centered aroundτ . Missing
values are replaced by zeros (as it would be on an infinite detector). The input vector is~a = ΣPr, the sym-
bolic notation for the precomputed summation for all projection anglesd according to Equation (6). Note
that the emphasis on the single pixel topology and the aggregation of the projection data partly eliminates
the expected benefits of the classification power of the Neural Network. The input vector for a certain pixel
carries little information about other pixels in the image,thereby increasing the difficulty of learning image
class specific features.

A multilayer perceptronis a feedforward network organized in multiple layers (an input and an output
layer, as well as (several) hidden layers), see Figure 3(b).Each layer is fully connected to the next. In contrast
to the perceptron model each node has a nonlinear activationfunction. In this case we will use the logistics
functionφ (x) = 1/

(
1 + e−βx

)
, with β = 1. It can be shown that each multilayer perceptron using only

linear activation functions has an equivalent perceptron model.

4.2 Initialization

The initialization is not trivial and may have a huge impact in the convergence of the Neural Network. For
linear perceptrons this effect is, generally, not too severe as the magnitude of the adjustment of the weights
is always the same. A wrongly initialized network is likely to converge eventually. Note that initialization
outside the interval[−1, 1] may result in divergent behavior. In all cases, a suitable distribution must be
chosen. Two distributions are commonly used; the uniform distribution, and the normal distribution. We will
use the normal distribution. For a linear perceptron we fixµ = 0.5, andσ = 0.25, whereµ is the aimed for
mean, andσ the standard deviation.

For nonlinear perceptrons, and consequently, multilayer perceptrons the initialization problem is harder.
The introduction of nonlinearity is the main culprit. For commonly used activation functions (hyperbolic
tangent and logistics) the behavior is similar. The use of the first derivative in updating the weights results in
a very small update when the input of a node is very large or very small. Only in a small interval, controlled
by the parameterβ, the weight adjustments are similar to the linear case. Besides the danger of divergent
behavior we face an additional hazard: being trapped in an inescapable region of the activation function. A
good strategy is to assure that we start (from initialization) in the region where we have a linear-like behavior.
We must be careful with adjusting parameterβ as we might end up with a completely linear perceptron, and
thereby reducing the additional capabilities of a nonlinear perceptron. We again fixµ = 0 andσ = 0.25 for
nonlinear perceptrons.



5 Experiments

In this section we describe several experiments, highlighting some examples. For a more comprehensive
set of experiments see [13]. The first experiment aims to illustrate the statement that a linear perceptron is
capable of simulating Equation (6). The second experiment describes a real-life case study. In all cases we
use a custom developed C++ framework.

An incremental trainingapproach is used. A single image of a particular image class is generated from
which a number of pixels are selected randomly. Each pixel isa training instance. The weights are updated
after each training instance. We call the usage of an image anepoch. In each epoch a number of pixels are
selected as training instance. We refer to the number of selected pixels asiterations. Here, the number of
epochs is fixed to10,000, and the number of iterations is fixed to3,000 (largely avoiding the problem of
overfitting). A set of50 predetermined images (for each image class) serves asvalidation set. The reported
errors are measured on the validation set. The average absolute error is calculated as the absolute difference
between each pixel in the original image with its corresponding reconstructed pixel, and averaged over the
total number of pixels within discA. Furthermore, the errors are averaged over the number of images in the
validation set.

5.1 Artificial Image Classes

We construct a number of artificial image classes to experiment on. For all image classes we fix the di-
mensions to128× 128 pixels. The 2 ELLIPSES (OVERLAY) image class consists of two ellipses of random
intensities (maybe with the same intensity) which may or maynot (partially) overlap each other. The ellipses
are drawn in a nondeterministic order. The last drawn ellipse determines the ultimate intensity. In [13], other
artificial image classes are defined including random noise.The features of these images are always cropped
to the discA. The first three classes resemble objects consisting of larger homogeneous areas of constant
graylevel, while the random noise images are mainly used to validate results. Samples of the image classes
are presented in Figure 4.

Figure 4: Example images from five different image classes named (from left to right): 2 ELLIPSES (OVER-
LAY ), 20 SMALL ELLIPSES (OVERLAY), 5 CONCENTRIC ELLIPSES(OVERLAY), RANDOM NOISE (1000),
and RANDOM NOISE (10000).

5.2 Simulating Filtered Back Projection

The first experiment aims to prove the statement: A linear perceptron should be able to reconstruct an image
from its Radon projections (for a large number of angles) as good as Equation (6).

As a training set we generate a set of10,000 (the number of epochs) random128× 128 images from the
image class 2ELLIPSES(OVERLAY). For each image we offer the Radon transform projections for k = 32,
and3,000 randomly chosen pixels as target outputs for a total of30,000,000 training examples. In Figure 5,
the differences in the reconstructions between filtered back projection and a linear perceptron are shown.

From Figure 5, some differences in the reconstruction images between the filtered back projection and
the Neural Network approach can be observed. So-calledimage artifactsare present in the filtered back
projection reconstruction giving the objects in the image atextured appearance, as well as “phantom” ob-
jects, see for example the second image from Figure 1. These artifacts are strongly oriented to the projection
angles. These can be hard to eliminate in an automated way. This is especially true fork < 32. In the Neural
Network generated reconstructions there are less image artifacts at the expense of softer boundaries of the
objects. In Figure 5, we also include the multilayer (with two hidden nodes) reconstructions. However, we
do not provide an extensive experimental comparison between the two network topologies. The reconstruc-
tions are much sharper defined and yield a lower average errorcompared to the linear perceptron case. The
next section provides some arguments to prefer the latter incertain situations.



Figure 5: The original image (top row) and filtered back projection reconstruction (second row) versus a lin-
ear perceptron (third row) and a multilayer perceptron reconstruction (bottom row), all with32 projections.

5.3 Real-life Case Study

The projection data for the real-life case study is not artificially created, but it is instead actual real-life
output of a CT scanner. In this case a homogeneous crystalline object. The data set consists of 332 slices of
the homogeneous crystalline object, see Figure 6. The dimensions of the images are originally1024× 1024
pixels. We reduced this dimensionality to384 × 384 pixels for two reasons; first, the object is rather small
compared to the full image size, and secondly, it reduces thecomputation times significantly. Per slice500
projections are included (equally dividing the0 to π semicircle).

In contrast to the earlier experiments, we have no original image to train on. We used the filtered back
projection reconstruction using all500 projections as an approximation of the original image, thereby pro-
viding a ground truth. Then we were interested in the reconstruction quality of a linear perceptron versus the
traditional filtered back projection approach, of course using (much) fewer projections, e.g., 50.

We apply a linear perceptron for several reasons. First, it is the most simple topology having the fewest
number of weights which makes it easy and fast to train. The initialization is easier because of its linearity.
The second motivation regards the practical implementation. The weights resulting from a trained linear
perceptron are assumed to be easily embedded within existing implementations.

For this experiment we randomly select1,000 slices, and from each selected slice we randomly select
10,000 pixels as training example resulting in a total of10,000,000 training instances. The perceptron was
trained using50 projections equally dividing the total of500 projections. The resulting reconstructions, as
are shown in Figure 6, are softer, as is the case for the artificial image classes. In Figure 7(a) the resulting
weight vector is shown. The symmetry can be clearly observed. The features are much less “sharp” as
compared to for instance the Ram-Lak kernel in Figure 7(b). The resulting reconstructions, as are shown in
Figure 6, are softer as well.

Table 1: Real-life average absolute errors.

Average error Standard deviation
Filtered back projection (k = 50) 0.1198 0.1262
Linear perceptron 0.0548 0.0632



Figure 6: Top row: example images from the real-life data set: slices 50, 145, and 20 reconstructed using
filtered back projection with500 projections. Bottom row: Reconstructed image by a linear perceptron. Here
50 projection angles were used (equally dividing the semicircle), and the perceptron was offered a total of
10,000,000 training instances. Note that only the pixels contained in discA are reconstructed.

In Table 1 the average absolute errors are presented. The linear perceptron trained on the real-life data
set performs best as can be expected. We observe about the same difference in reconstruction quality with
regard to the filtered back projection algorithm as is observed on our artificial image classes reconstructions.
We might conclude that a linear perceptron can be applied forthe reconstruction of real-life objects.
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(a) Weight vector of a linear perceptron after10,000,000 train-
ing instances.
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(b) Ram-Lak kernel of size64.

Figure 7: Weight vector of a linear perceptron after10,000,000 training instances. The discrete weights are
connected by linear interpolation for better readability.

6 Conclusions and Further Research

We applied various Neural Networks to the problem of discrete tomography, where we focused on obtaining
good quality reconstructions from a limited set of projections. Here, we present a summary of the conclu-
sions from the experiments in Section 5. As a general rule, Neural Networks are capable of reconstructing
very good quality images, especially when the image resolution is low, and there are only a few projections.
They lose their advantage over the traditional filtered backprojection technique when there are many (over
100) projections available. In theory, a linear perceptronis able to simulate the filtered back projection strat-
egy, i.e., we can choose the weight vector to be identical to the kernel used. Training a network does not
guarantee convergence to this kernel. In fact, it is quite hard to train a Neural Network (using the aggregation



approach) when many projections are used. The (aggregated)input vector shows little variation hampering
its training abilities, and making the network very sensible to its initialization values.

Clearly, different network topologies are capable of reducing the average absolute error compared to the
filtered back projection technique. From Figure 5, we can observe several differences of the approach of
both techniques. While filtered back projection tends to recreate sharply defined boundaries around objects,
the Neural Networks, especially the linear perceptron, make these edges softer. The reconstructions from
filtered back projection suffer from many image artifacts, while they are almost absent in the reconstructions
from the linear perceptron. It seems that the lower error values are mostly achieved by eliminating these
artifacts, while losing some on the sharpness of the objects. This observation is supported by the, on average,
higher error for the 20 SMALL ELLIPSES (OVERLAY) image class compared to other image classes with less
ellipses, i.e., less boundaries.

The results from the real-life data set case study presentedin Section 5.3 are encouraging. A linear
perceptron is capable of generating high quality reconstructions of real-life data. It is very beneficial to train
on the same class as the objects that will be ultimately reconstructed, however, due to the limited size of
our real-life data set no hard conclusions can be drawn. The resulting weight vector from the trained linear
perceptron can be easily transferred to existing practicalimplementations, and therefore, instantly improve
reconstruction quality.

Many areas of future research remain. As we explored the behavior of simple Neural Networks (i.e.,
perceptrons) other topologies could be investigated, especially regarding the elimination of the aggregation
operator.
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