
 
 

Context-sensitive spell 
checking based on word 

trigram probabilities 
 
 
 
 
 
 
 
 
 
 
 

 
Suzan Verberne 

 



   

 

 
 

Context-sensitive spell 
checking based on word 

trigram probabilities 
 
 
 
 

Master thesis Taal, Spraak & Informatica 
University of Nijmegen 

 
 

Suzan Verberne 
February � August 2002 

 
 

Supervisors: 
Dr. Inge de Mönnink (KUN) 

Drs. Remco van Veenendaal (Polderland) 



Context-sensitive spell checking  Index  
 
  

 

Index 

Voorwoord.................................................................................................................................1 

1. Introduction...........................................................................................................................3 

2. Error classifications ..............................................................................................................6 
2.1. Error classifications in the literature..................................................................................6 

2.1.1. Relevant studies .........................................................................................................6 
2.1.2. Classifications described in the literature....................................................................8 

2.2. A two-dimensional classification ....................................................................................13 
2.3. Conclusion .....................................................................................................................14 

3. Automatic spelling error detection and correction.............................................................16 
3.1. Introduction....................................................................................................................16 
3.2. The process of automatic spelling error detection and correction .....................................17 

3.2.1. Error detection .........................................................................................................18 
3.2.2. Finding candidate corrections...................................................................................19 
3.2.3. Ranking candidate corrections..................................................................................19 

3.3. Performance of automatic spelling error detection and correction techniques...................20 
3.4. A modern spell checking technique.................................................................................20 

3.4.1. Structure of the spell checker lexicon .......................................................................21 
3.4.2. Error detection .........................................................................................................21 
3.4.3. Finding candidate corrections...................................................................................23 
3.4.4. Ranking candidate corrections..................................................................................25 

3.5. Problems for modern spell checking applications ............................................................26 
3.5.1. The word boundary problem ....................................................................................26 
3.5.2. The problem of short word errors .............................................................................27 
3.5.3. The problem of real-word errors for spelling error detection and correction ..............27 

3.6. Techniques for real-word error detection and correction..................................................28 
3.6.1. Methods based on probability information................................................................28 
3.6.2. Methods based on semantic information...................................................................29 

3.7. Conclusion .....................................................................................................................30 

4. Building a context-sensitive spell checker...........................................................................32 
4.1. Introduction....................................................................................................................32 
4.2. Building a lexicon-based spell checker............................................................................33 

4.2.1. The British English Source Lexicon .........................................................................34 
4.2.2. Creating a spell checker lexicon from BESL ............................................................34 
4.2.3. Features of the BESL spell checker ..........................................................................36 

4.3. The context-sensitive spell checking method and algorithm ............................................37 
4.3.1. Motivation for the context-sensitive spell checking method......................................38 
4.3.2. The context-sensitive spell checking algorithm.........................................................39 



Context-sensitive spell checking  Index  
 
  

 

4.4. Building the trigram database .........................................................................................40 
4.4.1. The British National Corpus.....................................................................................40 
4.4.2. The algorithm for extracting trigrams .......................................................................42 

4.5. Comparison to other context-sensitive spell checking methods........................................43 
4.6. Conclusion .....................................................................................................................43 

5. The performance of the spell checking application ............................................................45 
5.1. Evaluating a spelling error detection and correction system.............................................45 

5.1.1. Performance measures .............................................................................................45 
5.1.2. Polderland�s methods for measuring performance ....................................................46 

5.2. The performance of the BESL spell checker....................................................................48 
5.2.1. Performance of the BESL speller for detecting and correcting errors in general ........49 
5.2.2. Performance of the BESL speller for generating suggestions for real-word errors .....50 

5.3. The performance of the context-sensitive spell checker ...................................................53 
5.3.1. Test material ............................................................................................................53 
5.3.2. Testing method ........................................................................................................54 
5.3.3. Results.....................................................................................................................55 
5.3.4. Improvement with respect to the BESL spell checker ...............................................57 

6. Conclusion ...........................................................................................................................58 
6.1. Answering the main questions ........................................................................................58 
6.2. Evaluation of the current research ...................................................................................59 
6.3. Comparing the results of the current research to those of other studies ............................60 

6.3.1. Golding and Schabes (1996) ....................................................................................60 
6.3.2. Hirst and Budanitsky (2001) ....................................................................................60 
6.3.3. St-Onge (1995) ........................................................................................................61 
6.3.4. Mays, Damerau and Mercer (1991) ..........................................................................62 

6.4. Further research..............................................................................................................63 

References ...............................................................................................................................64 

Appendices .............................................................................................................................A1 
Appendix I � a sample of phonrulesEN.txt............................................................................ A2 
Appendix II � User interfaces ............................................................................................... A3 

1. User interface of the macro test for comparing two spell checkers ................................. A3 
2. User interface of the macro test for comparing the BESL speller and the MS speller ..... A3 

Appendix III � Classified list of 134 real-word errors ........................................................... A4 
Appendix IV � Perl programs ............................................................................................... A6 

1. The Perl program for extracting relevant information from BESL ................................. A6 
2. The Perl program for editing the BESL word list........................................................... A7 
3. The Perl program for executing the context-sensitive spell checking algorithm ............. A8 
4. The Perl program for replacing words in a BNC text by real-word errors .................... A12 
5. The Perl program for compiling a list of erroneous trigrams........................................ A13 



Context-sensitive spell checking  Index  
 
  

 

6. The Perl program for counting the average number of suggestions .............................. A15 
7. The Perl program for evaluating the output files of the context-sensitive spell checker A15 

Appendix V � Format of output file from context-sensitive spell checker............................ A19 
 



Context-sensitive spell checking  Voorwoord  
 
  

 1

Voorwoord 

De Volkskrant van 11 juli 2002 bericht van een spelfout op het graf van de op 6 mei 2002 
overleden politicus Pim Fortuyn. Op zijn graf stond in eerste instantie de volgende tekst, uit een 
gedicht van Roland Holst: 
 

Ik zal de halmen niet meer zien 
nog binden ooit de volle schoven 
maar doe mij in de oogst geloven 
waarvoor ik dien... 

 
De Volkskrant schrijft: 
 

Marten Fortuyn erkent dat hij verantwoordelijk is voor de fout. Het was hem niet 
opgevallen dat het woordje 'nog' eigenlijk 'noch' moest zijn: 'De spellingscorrector op 
mijn computer zag het natuurlijk niet.' 

 
Marten Fortuyn heeft gelijk: de spellingscorrector kon niet detecteren dat nog in dit geval een 
spelfout was, omdat het zelf een bestaand woord is en dus voorkomt in het woordenboek van de 
spellingscorrector. Dit spellingscontroleprobleem � spel- en typfouten die resulteren in een 
bestaand woord � is het onderwerp van mijn scriptie. 
 
Ik heb mijn scriptie geschreven als afsluiting van de vierjarige opleiding Taal, Spraak en 
Informatica aan de Katholieke Universiteit Nijmegen. In de onderzoeksvariant van deze studie 
wordt de scriptie gecombineerd met een stage. Gedurende mijn studie was ik met name 
geïnteresseerd in de taaltechnologische onderdelen, zoals automatisch vertalen, information 
retrieval en formele grammatica�s. Omdat ik gedurende de laatste twee en een half jaar van mijn 
studie als student-assistent heb gewerkt bij de afdeling Taal en Spraak, was ik al bekend met de 
gang van zaken binnen de faculteit. Daarom koos ik ervoor extern stage te lopen, met als doel 
erachter te komen hoe het is om in een bedrijf te werken. 
Toen ik dr. Peter-Arno Coppen vertelde over mijn stageplannen, noemde hij Polderland Language 
& Speech Technology als mogelijk bedrijf om stage bij te lopen. De informatie op de website van 
Polderland sprak me erg aan; mijn keuze voor Polderland als stagebedrijf was dan ook niet 
moeilijk. Ik hoopte tijdens mijn stage uit te vinden of ik het leuk vind om te werken aan praktisch 
onderzoek en praktische toepassingen. Bovendien wilde ik graag kennis maken met de rol die een 
taal- en spraaktechnoloog kan spelen in het moderne toegepaste onderzoek. 
 
Na een paar gesprekken met Polderland groeide het idee om onderzoek te doen in het kader van 
spellingscorrectie. Dit leek me een interessant onderzoeksgebied. Na wat denkwerk en met de 
hulp van mijn begeleider dr. Inge de Mönnink, besloot ik om onderzoek te doen naar het gebruik 
van contextinformatie voor het oplossen van het probleem van fouten die resulteren in bestaande 
woorden.  



Context-sensitive spell checking  Voorwoord  
 
  

 2

 
Van 1 februari tot 1 juni 2002 heb ik stage gelopen bij Polderland en ben ik praktisch bezig 
geweest met mijn onderzoek. Daarna heb ik � ook bij Polderland � deze scriptie geschreven. 
Gedurende mijn periode bij Polderland heb ik ook praktische werkervaring kunnen opdoen 
doordat ik heb meegedraaid met de dagelijkse gang van zaken en heb meegewerkt aan enkele 
projecten. Dit is mij allemaal erg goed bevallen. 
 
Met uitzondering van dit voorwoord heb ik mijn scriptie in het Engels geschreven. Argumenten 
daarvoor waren ten eerste dat mijn onderzoek een spellingscontrole voor het Engels bestudeert en 
ten tweede dat alle literatuur over het onderwerp in het Engels was. 
 
Dan rest mij nu nog het bedanken van enkele mensen die mij hebben geholpen bij het schrijven 
van mijn scriptie. Ten eerste natuurlijk mijn begeleider dr. Inge de Mönnink, die zeer betrokken is 
geweest bij mijn scriptie door alle tekst zowel inhoudelijk als tekstueel kritisch te bekijken en 
steeds nuttig commentaar te geven. Ook drs. Remco van Veenendaal, mijn stagebegeleider bij 
Polderland, is zeer behulpzaam geweest met allerlei praktische en inhoudelijke zaken, met name 
gedurende mijn stageperiode. Daarnaast wil ik mijn Polderland-kamergenoot drs. Olaf Seibert 
bedanken voor zijn praktische hulp en Perl-vaardigheden, die onmisbaar zijn gebleken tijdens 
mijn onderzoek. Tot slot bedank ik dr. Nelleke Oostdijk, die tweede lezer is geweest van mijn 
scriptie. 
 
Wie na dit voorwoord nog steeds geïnteresseerd is in mijn scriptie, wens ik veel plezier met het 
lezen ervan. 
 

Suzan Verberne 
Nijmegen, september 2002 



Context-sensitive spell checking  1. Introduction  
 
  

 3

1. Introduction 

 
 

Ode to the Spell Checker 
 
Eye halve a spelling checker 
It came with my pea sea 
It plainly marques four my revue 
Miss steaks eye kin knot sea. 
 
Eye strike a key and type a word 
And weight four it two say 
Weather eye am wrong oar write 
It shows me strait a weigh. 
 
As soon as a mist ache is maid 
It nose bee fore two long 
And eye can put the error rite 
Its rare lea ever wrong. 
 
Eye have run this poem threw it 
I am shore your pleased two no 
Its letter perfect awl the weigh 
My checker tolled me sew. 
 
Norman Vandal 

 
When a modern spell checker for English would be used to spell check the poem of Norman 
Vandal above, it would find no errors. This is not because the text contains no errors, but because 
all errors resulted in existing words. In line 7 the clause Whether I am wrong or right is intended, 
but the words whether, I and right are replaced by respectively weather, eye and write. All three 
words sound like the intended word but have a different meaning. The words are considered 
erroneous because they are different from the intended word, in spite of the fact that they appear 
in every dictionary. This type of error is referred to as real-word errors. All modern commercial 
spelling error detection and correction tools work on word level and use a lexicon. Every word 
from the text is looked up in the speller lexicon. When a word is not in the lexicon, it is detected 
as an error. In order to correct the error, a spell checker searches the lexicon for words that 
resemble the erroneous word most. These words are then suggested to the user who chooses the 
word that was intended. Since a lexicon-based spell checker cannot detect real-word errors, these 
errors are not corrected. This is referred to as the problem of real-word errors. Since spelling 
error detection and correction on word level cannot solve this problem, research into automatic 



Context-sensitive spell checking  1. Introduction  
 
  

 4

spelling error detection and correction now focuses on the development of spell-checking 
algorithms that make use of context. Spelling error detection and correction techniques that aim at 
detecting and correcting real-word errors are thus also referred to as context-sensitive spell 
checking techniques. 
In the current research, I aim at creating a context-sensitive spell checking method that is able to 
detect and correct all kinds of human-generated real-word errors. Starting point for the context-
sensitive spell checker is a lexicon-based spelling error detection and correction application that 
detects and corrects non-word errors (errors not yielding a lexicon entry). The context-sensitive 
spell checker can be combined with this lexicon-based spelling error detection and correction 
application in order to create an application that is able to detect and correct non-word errors as 
well as real-word errors. In the current research, I do not aim to create such an application. In 
fact, I will design and build both a lexicon-based spell checker and a stand-alone context-
sensitive spell checker, in order to be able to test them separately. 
 
The method for context-sensitive spelling error detection and correction that is used in the current 
research considers three-word sequences (word trigrams) instead of single words. The main idea 
behind this is that the misspelling of a word often results in an unlikely sequence of (three) words. 
For example, suppose one misspells of as off in the sequence one of them. I expect the relative 
frequency of the trigram one off them to be much smaller than the relative frequency of one of 
them. This probability information can be used for detecting the trigram one off them as wrong. In 
order to correct an erroneous trigram, the context-sensitive spell checker tries to find suggestion 
trigrams. This is done by changing the original words in the trigram into relatively similar words. 
These new words are then combined in every way possible, resulting in various suggestion 
trigrams. 
 
The main goal of this research is finding out whether context-sensitive spell checking based on 
word trigram probability information is a valid solution to the problem of real-word errors. For 
this purpose, I have formulated two main research questions: 
 

1. What proportion of real-word errors can be detected and corrected using context-sensitive 
spell checking based on word trigram probability information? 

 
2. To what extent do the results of a lexicon-based spell checker improve when the context-

sensitive spell checker is combined with the lexicon-based spell checker? 
 
In chapter 2, error classifications, I discuss various error classifications that can be found in the 
literature and introduce the error classification that is used in the current research for building and 
testing a spell checking application that combines a context-sensitive spell checker with a 
lexicon-based spell checker. Chapter 3, automatic spelling error detection and correction, deals 
with all aspects of automatic spelling error detection and correction. The process of detection and 
correction in general and the performance of spell checking techniques are described first. After 
that, a frequently used modern-spell checking technique is described in detail, followed by a 



Context-sensitive spell checking  1. Introduction  
 
  

 5

discussion of some problems for modern spell checking applications. One of these problems is 
the problem of real-word errors. Subsequently, some existing techniques for detecting and 
correcting real-word errors are discussed. 
In chapter 4, building a context-sensitive spell checker, I describe the context-sensitive spell 
checking method and algorithm that are used in the current research. First, the lexicon-based spell 
checker, which is the starting point for the spelling error detection and correction tool, is 
described in detail. Then I describe the method for building the context-sensitive spell checker, 
followed by a comparison to other context-sensitive spell checking methods. 
Chapter 5, performance of the spell checking application, describes and discusses the results of 
the current research. First, some general evaluation techniques for spelling error detection and 
correction systems are described. Then the performances of both the lexicon-based spell checker 
and the context-sensitive spell checker are described and discussed. 
In chapter 6, conclusion, I draw some conclusions from the current research. The two main 
research questions are answered first, followed by an evaluation of the current research. Then the 
results are compared to the results of other studies. Finally, I give some recommendations for 
further research. 
 
 
 



Context-sensitive spell checking  2. Error classifications  
 
  

 6

2. Error classifications 

 
As described in chapter 1, context-sensitive spell checking aims at detecting and correcting real-
word errors. In order to create a valid method for context-sensitive spell checking, it is important 
to define real-word errors properly. Moreover, it is important to know what kinds of errors occur 
and how errors can be classified. For the current research, I aim at making a valid error 
classification for building and testing a spell checking application that extends a lexicon-based 
spell checker with context-sensitive error detection and correction. In order to make a good 
classification of errors, several error classifications as found in the literature are discussed first 
(section 2.1). In section 2.2, the classification that is used for the current research is described.  
 
 
2.1. Error classifications in the literature 

In the literature, errors have been classified in different ways. One classification does not exclude 
another. In this section, I consider the different classifications in order to find a classification that 
can describe all errors. The classifications that are described in this section come from several 
studies. In the next subsection (2.1.1), these studies are described. In section 2.1.2, the error 
classifications from these studies are discussed. 
 
2.1.1. Relevant studies 

Kukich (1992b) describes many error classifications that have been explored by several studies. I 
consider seven of these studies relevant for the current research. All of the studies that are 
mentioned in this section are taken from Kukich (1992b). 
Studies often present different results when determining the frequencies of occurrence of several 
error classes. These differences can be explained by the characteristics of the studies: the size of 
the corpus from which the errors have been taken, the text type, the error types taken into account 
and the number of errors considered. Table 2-1 gives an overview of these features for the 
relevant studies. A question mark indicates that the information is not available for that particular 
study. The column # of errors contains two values: the absolute number of errors and (between 
brackets) the percentage of erroneous words of all words in the corpus. These percentages 
indicate that the error rate varies with text type. Unfortunately, the error rates for Kukich (1990) 
and Young, Eastman and Oakman (1991) are unknown. Probably, the error rate is high in the 
written conversations studied by Kukich (1990) and low in the natural language queries studied 
by Young, Eastman and Oakman, but this is just a presumption.  
Considering the differences between the studies shown in table 2-1, it is plausible that the 
frequencies of particular error types differ. This is described in the next section. 
 
 



Context-sensitive spell checking  2. Error classifications  
 
  

 7

Er
ro

r t
yp

es
 

N
o 

ty
pi

ng
 e

rro
rs

1  

N
o 

re
al

-w
or

d 
er

ro
rs

 

A
ll 

so
rts

 o
f e

rro
rs

 

N
o 

ty
pi

ng
 e

rro
rs

1  

A
ll 

so
rts

 o
f e

rro
rs

 

? A
ll 

so
rts

 o
f e

rro
rs

 

# 
of

 E
rr

or
s 

1,
18

5 
(1

.5
%

) 

50
,0

00
 (0

.2
%

) 

1,
37

7 
(0

.1
%

) 

42
18

 (2
.5

%
) 

2,
00

0 

? ? 

Te
xt

 ty
pe

  

H
an

dw
rit

te
n 

es
sa

ys
 o

f 
C

am
br

id
ge

 c
ol

le
ge

 a
pp

lic
an

ts
 

Sc
ie

nt
ifi

c 
an

d 
sc

ho
la

rly
 te

xt
 

B
ro

w
n 

co
rp

us
 a

nd
 te

xt
s w

rit
te

n 
by

 h
ig

h-
ed

uc
at

ed
 b

ad
 sp

el
le

rs
 

H
an

dw
rit

te
n 

st
ud

en
t 

co
m

po
si

tio
ns

 

W
rit

te
n 

co
nv

er
sa

tio
ns

 b
et

w
ee

n 
de

af
 p

eo
pl

e 

N
at

ur
al

 la
ng

ua
ge

 q
ue

rie
s t

o 
a 

do
cu

m
en

t r
et

rie
va

l s
ys

te
m

 

Ty
pe

d 
te

xt
ua

l c
on

ve
rs

at
io

ns
 

C
or

pu
s s

iz
e 

 

80
,0

00
 w

or
ds

 

25
,0

00
,0

00
 w

or
ds

 

1,
01

4,
31

2 
+ 

60
,0

00
 w

or
ds

 

17
0,

01
6 

w
or

ds
 

? 42
6 

na
tu

ra
l l

an
gu

ag
e 

qu
er

ie
s 

40
,0

00
 w

or
ds

 

Ta
bl

e 
2-

1 
Sh

or
t d

es
cr

ip
tio

n 
of

 re
le

va
nt

 st
ud

ie
s i

nt
o 

er
ro

r c
la

ss
ifi

ca
tio

n 
(a

ll 
de

sc
rib

ed
 b

y 
K

uk
ic

h 
(1

99
2b

) 

St
ud

y 

W
in

g 
an

d 
B

ad
de

le
y 

(1
98

0)
  

Po
llo

ck
 a

nd
 Z

am
or

a 
 

(1
98

3 
an

d 
19

84
) 

Y
an

na
ko

ud
ak

is
 a

nd
 F

aw
th

ro
p 

(1
98

3)
  

M
itt

on
 (1

98
7)

 

K
uk

ic
h 

(1
99

0)
  

Y
ou

ng
, E

as
tm

an
 a

nd
 O

ak
m

an
 

(1
99

1)
  

K
uk

ic
h 

(1
99

2a
) 

 
 

                                                   
1 The corpus of this study does not contain typing errors since the text was hand-written 



Context-sensitive spell checking  2. Error classifications  
 
  

 8

2.1.2. Classifications described in the literature 

In this section, six classifications are described that have been taken from Kukich (1992b) and 
that have been in described the studies mentioned in section 2.1.1 
 
Typing errors vs. spelling errors 
A first error classification that is found in the literature is that between typing errors (sometimes 
referred to as typos) and spelling errors2. Typing errors are slips of the keyboard, analogous to 
slips of the pen. A writer who produces a typing error or slip of the pen knows the correct spelling 
of the word but makes a mistake when typing or writing the word. Since it is not likely for a 
writer to make many mistakes within one word, most erroneous words resulting from a typing 
error orthographically resemble the intended word (e.g. front ! fron). Spelling errors, on the 
other hand, result from the writer�s ignorance of the correct spelling. There are three possible 
causes for spelling errors. First, the erroneous word phonetically resembles the intended word 
(e.g. memories ! memerys). In case of these phonetic errors, the resulting string is a homophone 
or near-homophone of the intended word. Second, the erroneous word bears a semantic similarity 
to the intended word (e.g. council ! consul). Third, the writer is ignorant of a grammatical rule 
that should be applied. This can lead to incorrect use of subject-verb congruence (e.g. he does ! 
he do), wrong forms of irregular verbs (e.g. I ran ! I runned), or other grammatical mistakes.3 
Although many studies mention the distinction between typing errors and spelling errors, no 
research that I know of has been done into the frequency of these two classes. There has only 
been some research into the frequency of phonetic errors: Mitton (1987) found that 44% of all 
errors in his corpus involved homophones or near-homophones.  
 
Single error words vs. multiple error words 
A second error classification that is found in the literature is the distinction between erroneous 
words containing a single error and erroneous words containing multiple errors. In all studies 
described by Kukich (1992b), the definition of Damerau (1964) is used. He states that single-error 
misspellings are those erroneous words that contain a single instance of one of the following four 
character transformations: one character inserted, one character deleted, one character substituted 
or a transposition of two characters. These single transformations are sometimes referred to as 
Damerau transformations. Misspellings that contain more than one of these character 
transformations are referred to as multi-error misspellings. 

                                                   
2 Often, the term spelling error is used for both spelling errors and typing errors. This is also the case in the 
current research. Where the term can yield confusion, the meaning is explicitly mentioned. The term 
automatic spelling error detection and correction always refers to both spelling errors and typing errors. 
3 Sometimes, grammatical errors are not considered spelling errors but a separate category of errors. One 
could argue that grammatical errors are therefore not in the scope of spelling error detection and correction. 
In the current research, all grammatical errors that yield only one erroneous word (i.e. the sentence is 
corrected by changing just one word) are considered a subcategory of spelling errors. 
 



Context-sensitive spell checking  2. Error classifications  
 
  

 9

It is not exactly clear what the frequency of single errors and multiple errors is, since several 
studies obtained different results. Damerau (1964) found that approximately 80% of all 
misspelled words are single-error misspellings; Mitton (1987) found that 69% of the misspellings 
in his corpus were single errors. And Pollock and Zamora (1984) found that 94% of all spelling 
errors they studied were single-error misspellings.  
The large difference between the percentages found by Mitton (1987) and Pollock and Zamora 
(1984) (respectively 69% and 94%) can be explained by the fact that Mitton did not consider 
typing errors since he studied handwritten texts, whereas Pollock and Zamora used spelling errors 
as well as typing errors. Assuming that slips of the pen occur less frequently than slips of the 
keyboard, Pollock and Zamora�s corpus probably contained relatively more slips than Mitton�s 
corpus. As described above, erroneous words due to typing errors (i.e. slips) orthographically 
resemble the intended word more than erroneous words due to spelling errors. This implies that 
the frequency of single-error misspellings is higher for typing errors than for spelling errors. This 
explains the lower single-error rate in the corpus used by Mitton. The difference in frequencies 
may also be explained by corpus size, error type and text type: Pollock and Zamora used a much 
larger corpus and considered only non-word errors, whereas Mitton used a much smaller corpus 
and considered real-word errors as well as non-word errors. Their corpora also consisted of 
different text types. Unfortunately, there is no research I know of that shows a connection 
between corpus size, error type and text type on the one hand and single-error rates on the other. 
 
Errors in short words vs. errors in long words 
A third distinction in errors is that between errors occurring in short words and errors occurring in 
long words. What is the relation between word length and error frequency? There is a wide 
variance in the proportion of errors that occur in short words according to different studies. 
Pollock and Zamora (1983) found that errors in words of three and four characters constitute 
9.2% of all errors. Yannakoudakis and Fawthrop (1983) found that the frequency of errors 
occurring in short words was about 1.5%, whereas Kukich (1990) found that over 63% of the 
errors occurred in words of two, three and four characters. The question arises where this large 
difference between 1.5%, 9.2% and 63% comes from. Firstly, the definition of short words is not 
the same for all three studies. Kukich considered words of length two, three and four characters, 
whereas Pollock and Zamora and Yannakoudakis and Fawthrop considered words of three and 
four characters. However, the different definitions of short words is not expected to fully explain 
the differences in short-word error frequencies that were found. Secondly, the text types that have 
been used for counting the frequencies are very different: Yannakoudakis and Fawthrop used 
texts from the Brown corpus and texts written by high-educated adults and Pollock and Zamora 
used a scientific and scholarly corpus of texts, whereas Kukich used written conversations 
between deaf people. The written data used by Kukich probably resembles spoken language much 
more than the written data used by Yannakoudakis and Fawthrop or Pollock and Zamora. 
Therefore, in Kukich�s data, average word length is expected to be smaller than in 
Yannakoudakis and Fawthrop�s and Pollock and Zamora�s data. If the frequency of short words 
in Kukich�s texts is indeed higher than in Yannakoudakis and Fawthrop�s and Pollock and 
Zamora�s texts, the frequency of errors in short words will be higher too. Thus, text type plays an 



Context-sensitive spell checking  2. Error classifications  
 
  

 10

important role in the frequency of occurrence of short-word errors. To know whether the large 
difference could be explained by text type only, more information on the methods of both studies 
is needed. 
 
First character errors vs. nth character errors 
Another possible classification of errors is that between errors occurring in the first character of a 
word and errors occurring in the rest of the word. The first character of a word can be deleted 
(from ! rom), substituted (from ! grom), transposed with the second character (from ! rfom) 
or another character can be inserted before the first character (from ! dfrom). An nth character 
error is an error that occurs in a character that is not the first character of the word. 
There has been some research into the percentage of errors that occur in the first character of a 
word. Pollock and Zamora (1983) found that 3.3% of their 50,000 misspellings involved first 
characters; Yannakoudakis and Fawthrop (1983b) found a first-position typing error rate of 1.4%; 
Mitton (1987) found that 7% of all misspellings involved first-position errors. And Kukich 
(1992a) observed a 15% first-position error rate. 
The differences between these results (respectively 3.3%, 1.4%, 7% and 15%) can first of all be 
explained by the different text types: Yannakoudakis and Fawthrop used texts from the Brown 
corpus and texts written by highly-educated adults; Pollock and Zamora used scientific and 
scholarly texts, whereas Mitton studied handwritten texts from fifteen-year-olds and Kukich used 
written conversations between deaf people. Probably, the difference between the results of 
Yannakoudakis and Fawthrop (1.4%) and Pollock and Zamora (3.3%) is caused by the difference 
in corpus size. Especially the large amount of first-character errors found by Kukich is striking, 
but it can be explained by text type: as the corpus used by Kukich probably mostly resembles 
spoken language, it contains relatively short words. This can probably explain the high amount of 
first-character errors: an error in a three-character word is more likely to be a first-character error 
than an error in a ten-character word since the error can be in fewer different positions. 
 
Errors within one word vs. word boundary errors 
A fifth classification of errors that has been mentioned in the literature is that between errors 
within a word and word boundary errors. Word boundary errors are those errors that result from 
incorrect spacing. There are two types of word boundary error: incorrect splits (e.g. together ! to 
gether) and run-ons (e.g. a lot ! alot). There has been little research into the frequency of word 
boundary errors. Kukich (1992a) found that 15% of all errors were word boundary errors. Mitton 
(1987) found that 13% of his 4218 errors were word boundary errors.  
 
Non-word errors vs. real-word errors 
Finally, a classification can be made between non-word errors and real-word errors. Non-word 
errors are those errors that yield a character string that is not a valid word (e.g. from ! grom).  
Real-word errors yield a character string that is a valid and correct word itself (e.g. from ! form).  
There have been several studies into the frequency of real-word errors. Peterson (1986) studied 
the relation between lexicon size and real-word error rate. He only considered single error 
misspellings (Damerau, 1964). When a larger lexicon is used (and therefore more strings are 



Context-sensitive spell checking  2. Error classifications  
 
  

 11

considered real words), a word is more likely to yield another lexicon entry when misspelled. 
Peterson found that the real-word error rate ranged from 2% for a small lexicon to 10% for a 
50,000-word lexicon and almost 16% for a 350,000-word lexicon. Mitton (1987) found that 40% 
of all 4218 errors were real-word errors. Young, Eastman and Oakman (1991) found a real-word 
spelling error rate of 25%. Wing and Baddeley (1980) found that 30% of the errors were real-
word errors. The percentage found by Peterson (16%) is much lower than the percentages found 
by others. This is because Peterson only considered errors resulting from single-error 
misspellings and the other studies also addressed errors resulting from more than one character 
transformation. The differences between the other three results (Mitton; Young, Eastman and 
Oakman and Wing and Baddeley) can mainly be explained by text type. Mitton and Wing and 
Baddeley both used a corpus of handwritten texts. The handwritten corpus used by Mitton 
probably contained relatively many short words, because it consisted of compositions written by 
fifteen-years-old students. Short words are more likely to yield a real word when misspelled (see 
section 3.5.2). This probably explains the high real-word error rate found by Mitton.  
Unfortunately, no text types that are relevant for the current research have been studied: 
handwritten texts are never the input of a spelling error detection and correction system and 
natural language queries are much shorter than a text that usually is spell checked. Therefore, no 
choice is made for one of the studies� results, but the whole range from 25% to 40% is used as 
real-word error rate for the current research. 
 
Classifications within real-word errors 
Above, errors have been classified into non-word errors and real-word errors. In the literature, 
some subclassifications within the class of real-word errors are considered as well. Mitton (1987) 
divides real-word errors into three classes: wrong-word errors, wrong-form-of-word errors and 
word-division errors. Wrong-word errors are those errors where a semantically and grammatically 
different word was written instead of the correct one (e.g. know ! now). Wrong-form-of-word 
errors are incorrect grammatical forms of the intended word, such as using incorrect tense 
(yesterday I went ! yesterday I go) or incorrect number (dozens of things ! dozens of thing). 
Word-division errors are those word boundary errors that happen to result in one or more correct 
words (e.g. inside ! in side). Mitton found that 44% of all real-word errors were wrong-word 
errors; 24% were wrong-form-of-word errors and 32% were word-division errors. Within the 
class of word-division errors, most errors were incorrect splits; it was very rare for run-ons to 
produce a real word. 
Kukich (1992b) chooses another classification of real-word errors. She distinguishes between the 
cause of an error and the result of an error. When discussing causes of errors, Kukich mentions 
six types: 
 

1. Simple typos (e.g. from ! form);  
2. Cognitive or phonetic lapses (e.g. ingenious ! ingenuous, there ! their);  
3. Syntactic or grammatical mistakes (e.g. he arrives ! he arrive);  
4. Semantic anomalies (e.g. in five minutes ! in five minuets, leave a message ! lave a 

message);  



Context-sensitive spell checking  2. Error classifications  
 
  

 12

5. Insertions or deletions of whole words (e.g. the system has been operating system for 
almost three years); 

6. Improper spacing (e.g. myself ! my self, ad here ! adhere).  
 
Typos (class 1) have been described earlier in this section, when the classification into typing 
errors and spelling errors was discussed. In that classification, spelling errors were described as 
those errors that result from the writer�s ignorance of the correct spelling: they can have been 
caused by phonetic resemblance, semantic resemblance or ignorance of a grammatical rule. This 
class of errors corresponds to the classes 2 and 3 of Kukich�s cause-classification. 
Semantic anomalies, class 4 in Kukich�s classification, are sometimes called malapropisms. 
Sentences resulting from this kind of error are not syntactically incorrect but only semantically. 
When someone mistypes minutes as minuets in the context in five minutes, the resulting word 
sequence is not syntactically incorrect, but it is semantically incorrect, because it has another 
meaning than the user had intended.  
Insertions or deletions of whole words (Kukich�s class 5) always yield a real-word error, unless a 
writer inserts an incorrectly spelled word. This class of errors differs from the classes 1 to 4 in 
that errors due to word insertions or deletions do not yield an incorrect word that has to be 
corrected, but a sentence that contains one word too much or too few. Errors due to improper 
spacing (class 6) have a similar property: the resulting sentence also contains an incorrect number 
of words. These word-division errors can be incorrect splits as well as run-ons. 
The classes 1, 2 and 4 in Kukich�s classification correspond to the class of wrong-word errors in 
Mitton�s classification. Grammatical errors (Kukich�s class 3) correspond to Mitton�s wrong-
form-of-word errors. Both Kukich and Mitton consider a separate class of errors due to improper 
spacing: word-division errors (class 6). Mitton does not consider Kukich�s class 5, insertions or 
deletions of whole words, as a class of real-word errors. 
 
Kukich does not only classify real-word errors according to cause. She also classifies real-word 
errors according to possible results. When considering results of real-word errors, Kukich 
mentions four classes: 
 

1. Syntactic errors (e.g. The students are doing there homework);  
2. Semantic errors (e.g. He spent his summer travelling around the word);  
3. Structural errors (e.g. I need three ingredients: red wine, sugar, cinnamon and cloves); 
4. Pragmatic errors (e.g. He studies at the University of Toronto in England and she studies 

at Cambridge).  
 
Sentences that contain a syntactic error (class 1) are syntactically incorrect. The cause of this 
incorrectness is substituting a word by another word that has another part of speech. When 
someone substitutes their by there in the sentence The students are doing their homework, a 
possessive pronoun is substituted by an adverb. This substitution results in a grammatically 
incorrect sentence. 



Context-sensitive spell checking  2. Error classifications  
 
  

 13

Sentences that contain a semantic error (class 2) are semantically incorrect, but syntactically 
correct. This is the case when the writer substitutes a word by another word that has the same part 
of speech. When someone mistypes world as word in the context travelling around the world, the 
resulting word sequence is not syntactically incorrect, but it is semantically incorrect, because it 
has another meaning than the user had intended.  
Structural errors (class 3) violate the inherent coherence relations in a text, such as an 
enumeration violation. These errors are sometimes referred to as discourse structure errors. 
Pragmatic errors (class 4) reflect some anomaly related to the goals and plans of the discourse 
participants. In case of structural and pragmatic errors, the writer makes an error of thought. It is 
not necessarily the case that the resulting word was not intended by the writer. 
 
 
2.2. A two-dimensional classification 

For the current research, I need an unambiguous classification of (real-word) errors. The 
classification I have chosen is based on Kukich�s classification of real-word errors described 
above. Kukich distinguishes between the cause of an error and the result of an error. I use both 
classifications to arrive at a two-dimensional classification for the current research. However, 
Kukich�s classification is not unambiguous. For this reason, I had to make some changes. 
Kukich mentions six classes when discussing causes of errors: 
 

1. Simple typos (e.g. from ! form);  
2. Cognitive or phonetic lapses (e.g. ingenious ! ingenuous, there ! their);  
3. Syntactic or grammatical mistakes (e.g. he arrives ! he arrive);  
4. Semantic anomalies (e.g. in five minutes ! in five minuets, leave a message ! lave a 

message);  
5. Insertions or deletions of whole words (e.g. the system has been operating system for 

almost three years); 
6. Improper spacing (e.g. myself ! my self, ad here ! adhere).  

 
In my opinion, the last three categories are not causes of errors themselves but can all be placed 
in one of the first two categories. Semantic anomalies (class 4) are the result of either a typo (in 
five minuets, lave a message) or a cognitive or phonetic lapse (an ingenuous machine, Can I have 
a peace of cake please?). Insertions or deletions of whole words (class 5) cannot be caused by a 
typo and have to be caused by a cognitive lapse. Improper spacing (class 6) can be caused by 
either typos (I refer red to yesterday�s meeting) or cognitive lapses (The students are doing their 
home work). For my own classification, I will consequently only adopt Kukich�s categories 1, 2 
and 3 as causes of errors. 
Kukich distinguishes four types of real-word error results: 
 

1. Syntactic errors (e.g. The students are doing there homework);  
2. Semantic errors (e.g. He spent his summer travelling around the word);  



Context-sensitive spell checking  2. Error classifications  
 
  

 14

3. Structural errors (e.g. I need three ingredients: red wine, sugar, cinnamon and cloves); 
4. Pragmatic errors (e.g. He studies at the University of Toronto in England and she studies 

at Cambridge).  
 
In my opinion, structural and pragmatic errors are not spelling or typing errors but can perhaps be 
referred to as knowledge errors: the writer makes an error of thought. It is not necessarily the case 
that the resulting word was not intended by the writer, whereas in the current research, a word is 
considered erroneous if it is not the word that the user had intended. Consequently, the distinction 
between the intended word and the erroneous word has been made in this section and is also 
made in following sections. Therefore, in my classification I will not consider the categories 3 
and 4. I classify real-word errors in two categories: syntactic errors and semantic errors. The 
former category contains those errors that yield a syntactically incorrect sentence, whereas the 
latter category contains those errors that yield a syntactically correct but semantically incorrect 
sentence. 
Obviously, the two classifications suggested by Kukich are not mutually exclusive, but can be 
combined. Every (real-word) error is caused by either a typing error, a cognitive or phonetic 
lapse, or a grammatical mistake, and the result can be classified as either a syntactic error or a 
semantic error. In table 2-2 on page 15, this two-dimensional approach, which I adopt for my own 
research, is presented with possible causes of errors in rows and possible results in columns. 
Although Kukich�s classification is a classification of real-word errors, it is equally applicable to 
non-word errors. Therefore, non-word errors have been added to the scheme. Non-word errors 
can also be caused by either a typo, a phonetic lapse or a grammatical mistake. The cells of table 
2-2 contain an example of the category. 
 
 
2.3. Conclusion 

In this chapter, I aimed at finding a unambiguous classification of errors that can be used for the 
current research. In section 2.1, six classifications of errors have been described that can be found 
in the literature: spelling errors vs. typing errors, single errors vs. multiple errors, errors in short 
words vs. errors in long words, first character errors vs. nth character errors, errors within one 
word vs. word boundary errors and non-word errors vs. real-word errors. For the current research, 
especially the classification into real-word errors and non-word errors is important, since context-
sensitive spell checking aims at detecting and correcting particularly this type of error. I  studied 
the other five classifications in order to make an unambiguous classification for the current 
research. Moreover, several error classifications explored by others are important for their 
research into spelling error detection and correction techniques. Some of this research is 
described in chapter 3.  
After considering several error classifications, I chose a two-dimensional classification in which 
the distinction between typing errors and spelling errors and the distinction between non-word 
errors and real-word errors play an important role.  



Context-sensitive spell checking  2. Error classifications  
 
  

 15

Classifications within the class of real-word errors have also been proposed in the literature. 
Mitton (1987) and Kukich (1992b) did important research on this subject. For the current 
research, I adopted Kukich�s classification into syntactic errors and semantic errors and added it 
to the two-dimensional classification. The classification that I adopted for my own research can 
be found in table 2-2. 
 

R
ea

l-w
or

d 
se

m
an

tic
 e

rro
rs

 

m
in

ut
es

 !
 m

in
ue

ts
 

in
ge

ni
ou

s !
 in

ge
nu

ou
s 

he
 a

rr
iv

ed
 !

 h
e 

ar
riv

es
 

R
ea

l-w
or

d 
sy

nt
ac

tic
 e

rro
rs

 

fr
om

 !
 fo

rm
 

th
ei

r !
 th

er
e 

yo
u 

ar
ri

ve
 !

 y
ou

 a
rr

iv
es

 

N
on

-w
or

d 
er

ro
rs

 

co
ul

d 
!

 x
ou

ld
 

am
on

g 
!

 a
m

ou
ng

 

ra
n 
!

 ru
nn

ed
 

Ta
bl

e 
2-

2 
C

la
ss

ifi
ca

tio
n 

of
 e

rro
rs

 w
ith

 so
m

e 
ex

am
pl

es
 

C
au

se
 

Ty
po

 

C
og

ni
tiv

e 
or

 p
ho

ne
tic

 la
ps

e 

G
ra

m
m

at
ic

al
 m

is
ta

ke
s 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 16

3. Automatic spelling error detection and correction 

 
3.1. Introduction 

This chapter deals with automatic spelling error detection and correction. But what exactly is 
automatic spelling error detection and correction? This question comprises in four subquestions: 
 

1. What is a spelling error? 
2. What is detection? 
3. What is correction? 
4. What is automatic? 

 
What is a spelling error? 
In the current research spelling errors are defined as human-generated writing errors. As 
described in section 2.1, the term spelling error sometimes refers to both spelling errors and 
typing errors: automatic spelling error detection and correction aims at detecting and correcting 
both spelling errors and typing errors. In the current research this ambiguous denotation of the 
term spelling error is adopted. Also, the current research considers only human-generated 
spelling errors. While some techniques for detecting and correcting errors of optical character 
recognition (OCR) devices have been studied in the literature, most research has been done into 
techniques for detecting and correcting human-generated errors.  
 
What is detection? 
Error detection is the procedure of finding incorrectly spelled words in a text. A word that is 
considered incorrect is flagged by the spell checking application. If the word was indeed 
erroneous, the error has been detected. 
 
What is correction? 
Error correction is the procedure of correcting an error once it has been detected. An error is 
corrected when the spell checking application or the user replaces an erroneous word by the word 
that the user intended.4 Sometimes, the term error correction is used to refer to the processes of 
error detection and correction together. In the current research, I consistently adopt the distinction 
between error detection and error correction. 
 
What is automatic? 
The term Automatic spelling error detection and correction can refer to both fully automatic spell 
checking techniques and spell checking techniques that interact with the user. Fully automatic 

                                                   
4 In the current research it is assumed that in all cases the user of a spell checking application is the writer 
of the text that is spell checked. Therefore, the term user refers to the writer of the text. 
  



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 17

systems detect and correct errors without any intervention by the user. Interactive systems detect 
errors, then suggest a number of possible corrections and allow the user to choose the word that 
should replace the erroneous word. In the current research the term automatic error detection and 
correction is used for both fully automatic error correction and interactive error detection and 
correction. 
Automatic spelling error detection and correction is often referred to by using the shorter term 
spell checking. An application for spelling error detection and correction can then be referred to 
as a spell checking application. 
 
In the current chapter, I aim to make a complete description of automatic spelling error detection 
and correction. In section 3.2, the process of automatic spelling error detection and correction is 
described. Section 3.3 discusses the performance of modern spell checking applications. Section 
3.4 contains a detailed description of a modern spell checker. In section 3.5, three types of 
problem for spelling error detection and correction are discussed, followed by a description of 
techniques for real-word error detection and correction in section 3.6.  
 
 
3.2. The process of automatic spelling error detection and correction 

Research into automatic spelling error detection and correction has been carried out since the 
1960s. Several methods for automatic spelling error detection and correction have been explored. 
The current research only addresses methods that aim at detecting and correcting human-
generated errors. In techniques for human-generated error detection and correction a distinction is 
made between techniques that focus on error detection only and techniques that aim at detecting 
and correcting errors. The latter class can be subdivided into fully automatic correction 
techniques and interactive correction techniques. In case of a fully automatic system, error 
correction involves finding candidate corrections and choosing the most likely one. In case of an 
interactive system, candidate corrections are identified and then ranked. The user then chooses 
the correct word. Figure 3-1 on page 18 shows a graphical representation of this classification of 
error detection and correction techniques. This classification is applicable for both non-word error 
detection and correction and real-word error detection and correction. I will come back to this 
distinction in section 3.5.3.  
As figure 3-1 shows, error correction consists of two tasks: first, finding candidate corrections 
and second, choosing the most likely correction (in case of a fully automatic system) or ranking 
the candidate corrections (in case of an interactive system). However, choosing the most likely 
correction also involves ranking, because the task is determining which candidate correction is 
the most likely to be intended by the user. The process of spelling error correction (fully 
automatic as well as interactive) can thus be divided into three tasks:  
 

1. Error detection 
2. Finding candidate corrections 
3. Ranking candidate corrections  



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 18

 
In the next three subsections, methods for these three tasks are described. 
 

3.2.1. Error detection 

In error detection, a subdivision is made between non-word error detection and real-word error 
detection. The distinction between non-word and real-word errors has been explained in section 
2.1. Non-word error detection aims at detecting errors that do not result in lexicon entries. 
Techniques for non-word error detection are referred to as isolated-word error detection 
techniques. Real-word error detection is described in section 3.6. 
Research into non-word error detection has mainly been carried out from the early 1970s until the 
early 1980s. Two main techniques have been explored for non-word error detection: character n-
gram analysis and lexicon lookup. Character n-gram techniques work by examining each 
character n-gram in an input string and looking it up in a precompiled table of n-gram 
frequencies. Strings that contain non-existent or very infrequent n-grams (like jtg or bkm) are 

Figure 3-1 Classification of automatic spelling error detection and correction techniques 

Automatic 
spelling error 
detection and 
correction 
techniques 

Human- 
generated 
errors 

Other errors  

Detection only Detection
and 
Correction 

Finding candidate corrections 

Choosing the most likely correction 

Fully automatic Interactive 

Finding candidate corrections 

Ranking candidate corrections 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 19

detected as probable erroneous words. Character n-gram techniques require a large lexicon or 
corpus in order to compile the table of n-gram frequencies. Lexicon lookup techniques check for 
each word in the input text whether it is present in the spell checker lexicon. If the input word is 
not in the lexicon, it is detected as an error. Character n-gram techniques have mainly been used 
for detecting and correcting errors made by optical character recognition (OCR) devices. 
Lexicon-lookup techniques are more accurate than character n-gram techniques for detecting 
human-generated errors (Kukich, 1992b). Therefore, most techniques for detecting and correcting 
human-generated errors are lexicon-based. As the current research only addresses human-
generated errors, I will only consider lexicon-based spell checking techniques in the rest of this 
chapter. 
 
3.2.2. Finding candidate corrections 

Once a string has been detected as an error, an error correction technique aims at finding 
candidate corrections for the erroneous word. Several algorithms for finding candidate corrections 
have been explored. The most popular method by far is computing the minimum edit distance 
between the detected string and a lexicon entry. The minimum edit distance has been defined as 
the minimum number of editing operations (i.e. insertions, deletions and substitutions) that is 
required for transforming one string into another. The first minimum edit distance spelling 
correction algorithm based on these three types of character transformation was implemented by 
Damerau (1964). Levenshtein (1966) developed a similar algorithm for correcting deletions, 
insertions and transpositions. Other researchers developed variants of the algorithms that were 
developed by Damerau and Levenshtein: Wagner and Fischer (1974) generalized it to cover also 
multi-error misspellings and Lowrance and Wagner (1975) extended the algorithm to account for 
some additional transformations, such as the exchange of nonadjacent characters. Some minimum 
edit distance algorithms that have been explored do not only use orthographic distance scores, but 
also phonetic similarities. Veronis (1988) devised an algorithm that calculates weights for the 
orthographic edit distance based on phonetic similarity. These weights are important to be able to 
find phonetic misspellings, because often, phonetic misspellings are a large number of editing 
operations removed from the intended word (see also section 2.1). If only orthographic 
information is taken into account, the intended word will most probably not be among the 
candidate corrections. 
Minimum edit distance techniques have been applied to virtually all spelling correction tasks. An 
advantage of using a minimum edit distance measure is the fact that ranking can be performed 
easily. This is described in the next subsection.  
 
3.2.3. Ranking candidate corrections  

The goal of ranking is putting the most likely correction of the detected word at the top of the list 
of candidate corrections. The candidate corrections are presented to the user as ranked 
suggestions. 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 20

Ranking can be based on a similarity measure between the erroneous word and the suggestion or 
on word frequencies. The former possibility for ranking is useful in a system that uses a minimum 
edit distance technique for finding suggestions. Ranking can be based on this minimum edit 
distance. The candidate correction that has the smallest minimum edit distance to the detected 
string is put at the top of the suggestion list.  
The latter method, word frequency, could also be taken into consideration for ranking. For 
example, suppose suggestions anther, another and antihero are found for the string anither. The 
relative frequency of another probably is higher than the relative frequency of anther and 
antihero. Based on word frequency, another could be ranked higher than anther and antihero. 
A third possibility for ranking is combining minimum edit distance and word frequency. Some of 
the suggestions may have the same minimum edit distance. Then word frequency could be taken 
into consideration in order rank the suggestions properly. 
If no ranking based on penalty value or word frequency is performed, the suggestions could be 
shown in alphabetical order.  
 
 
3.3. Performance of automatic spelling error detection and correction techniques 

All modern commercial spell checking techniques use a minimum edit distance algorithm for 
finding and ranking suggestions. To give a general idea of the performance of modern spell 
checkers, I will briefly describe the performance of three minimum edit distance algorithms. In 
order to interpret the results of these spell checking evaluations properly, it is important to know 
how correction is defined. In general, when measuring the performance of an interactive spelling 
correction algorithm that performs ranking, an error is defined as corrected when the correct 
suggestion is at the top of the suggestion list.  
Damerau (1964) tested his minimum edit distance algorithm on a test set of 964 misspellings of 
words longer than five characters, using a lexicon of 1,593 words. He obtained a correction rate 
of 84%. Kukich (1990) used a test set of 170 misspellings, of which 25% involved multiple errors 
and 63% were words of two, three and four characters. She observed an overall correction rate of 
62%, using a lexicon of 1,142 words. Muth and Tharp (1977) found a correction rate of 97% on a 
1,487-word test set. Unfortunately, they did not specify the size of the lexicon they used or the 
characteristics of their test set.  
Kukich (1992b) did some research into the performance of isolated-word correction techniques in 
general. She found that approximately 78% of non-word errors could be corrected by isolated-
word correction techniques. I will return to the performance of isolated-word correction 
techniques in section 3.5.3. 
 
 
3.4. A modern spell checking technique 

The previous two sections give a general idea of the techniques used in modern spell checking 
applications and of their performance. In this section, a popular spell checking technique based on 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 21

a minimum edit distance algorithm is described in detail. Specifically, the algorithm that is used 
in the Polderland spell checkers is described. The design of the Polderland spell checkers 
functions as an example for modern commercial spell checking applications in general. 
Polderland spell checkers are interactive systems for detecting and correcting human-generated 
errors.5 
In a lexicon-based spell checking application, the lexicon has two functions. First, the content of 
the spell checker lexicon defines which words are considered correct and which are not. If a word 
in the text is not in the spell checker lexicon, it is considered an error and therefore it is flagged 
by the spell checking application. Second, when a word is detected as an error, the spell checker 
lexicon is used for generating possible corrections. A frequently used technique for implementing 
the minimum edit distance algorithm in a spelling error correction application is the trie-structure 
lexicon. All Polderland spell checkers have a trie-structure lexicon. This lexicon structure is 
described in section 3.4.1. After that, the three basic steps of error detection and correction are 
described: detecting errors (3.4.2), finding candidate corrections (3.4.3) and ranking candidate 
corrections (3.4.4).  
 
3.4.1. Structure of the spell checker lexicon 

As mentioned above, the structure of the lexicon in Polderland spell checkers is a trie. A trie 
(from retrieval) is a frequently used technique for implementing the minimum edit distance 
algorithm in a spelling error correction application, because it is useful for storing strings over an 
alphabet. It has been used for storing large dictionaries in spell checking and natural language 
understanding applications. 
An example of a trie structure is given in figure 3-2 on page 22. The words that have been stored 
in this trie are an, ant, all, allot, alloy, aloe, are, ate and be. All strings that share a common 
beginning hang off a common node. The top node in the picture represents the beginning of the 
string. By following a path in the trie, a string can be constructed. From the top node, the 
potential first characters are a and b. From the a node, the characters l, n, r and t are possible 
second characters. From n two paths can be chosen: the path to t and the path to the terminator 
node. If the terminator is chosen, the string is completed and the resulting word is an. When the 
strings are words with an {a..z} alphabet a node has at most 27 daughters � one for each 
following character plus a terminator. All strings in the trie can be found by a depth-first scan of 
the trie (Allison, 1999). 
In the following three sections, error detection, finding candidate corrections and ranking 
candidate corrections using a trie-structure lexicon are described.  
 
3.4.2. Error detection 

In order to detect errors in the text, every word from the text is searched in the lexicon trie. When 
the trie has been entered, all possible daughters from the start node are visited until the first 

                                                   
5 See figure 3-1 for the classification of automatic spelling error detection and correction techniques 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 22

character of the word is found. Then, the same is done for the second character and so on. If a 
terminator node and the end of the word are both encountered, the string is recognised as a 
lexicon entry. If there are no other possible paths from a node, the word cannot be found in the 
lexicon and is detected as an error.  
For example, suppose a user writes the string alliy. When arriving at this word, the lexicon trie is 
entered. The first three characters (all) match a path in the trie (see figure 3-2). When arriving at 
the second l, the path to i is chosen (see figure 3-3 on page 23). Then a node is encountered where 

two paths can be chosen: to g or to e. As the next character of the word under consideration (y) is 
not one of these characters, no path can be chosen. This implies that the word alliy is detected as 
an error and the user is notified. 

terminator � word end

node 

path to potential next character
x

Figure 3-2 A trie example 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 23

 
3.4.3. Finding candidate corrections 

When a word is detected as an error, the spell checking application tries to find suggestions for 
the word in the lexicon. Once a word has been flagged and the user has asked the system to 
generate suggestions, the lexicon trie is entered. All possible paths from the start node are tried 
until the first character of the flagged word is found. Then the same is done for the second 
character, and so on. As the word was misspelled and therefore is not present in the spell checker 
lexicon, there is a node from which the next character path cannot be found. Then paths to other 
nodes are followed from the current node and from previous nodes in order to find a string that is 
a candidate correction. When choosing a path to a character node that is not the next character in 
the original word, a penalty is given. This is done for each character node that is not equal to the 
corresponding character in the word. If the penalty passes a predefined border, then no further 

daughters are checked and the process is continued from a higher node. All resulting strings that 
have a lower penalty than the predefined border value are suggested to the user. 
The process of finding suggestions would not function properly without penalties, because if no 
penalty would be given when choosing a path to a different character node, candidate corrections 
would be found that are unlikely to be the intended word. For example, suppose that a user writes 
the string aloy. As the string is not present in the spell checker lexicon, it is detected as an error. 
The lexicon trie is then entered for finding suggestions. The part alo matches a path in the trie. 
From the node o several paths can be chosen, such as the path to n and the path to u. But there is 
no path to the next character y. In order to find a suggestion, the path to n is followed, from which 

 

i 

e 
g 

y 

no y ! 
error 
detected 

input: alliy
begin: al 

Figure 3-3 A detection example 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 24

the path to g can be chosen. Then a terminator is found and the string along has been completed. 
If no penalty is given, along consequently would be a suggestion for aloy, although it is not very 
likely to be the intended word. If a penalty is given for each divergent character, the penalty for 
the string along would probably be too high and therefore it would not be a suggestion. 
In fact, giving penalties for choosing another path in the trie corresponds to calculating the 
minimum edit distance; the Polderland spell checking applications use a minimum edit distance 
technique for finding suggestions. Figure 3-4 gives an example of finding suggestions. Here, the 
user wrote the string alliy. The part all matches a path in the trie. When arriving at the second l, 
the path to i is chosen (see figure 3-4), but there appears to be no daughter y. Then paths to other 
nodes are followed from the current node and from previous nodes. From the node l the link to o 
is chosen. Because a node is chosen that is not the next character in the word, a penalty is given. 
From o the correct character y can be chosen and therefore the penalty is not increased. From y a 
terminator is found and the string alloy has been formed. As the penalty is low, alloy will 
probably be a suggestion for the erroneous alliy. Similarly, the strings alley, allay and ally could 
be suggestions for alliy. 
 

If all sorts of single character transformation (insertion, deletion and substitution) yield an equal 
penalty value, the penalty value corresponds exactly to the minimum edit distance. However, in 
Polderland spell checking applications, it is possible to vary penalty values with various character 
transformations. For example, it is possible to predefine that the penalty that is given when 
performing substitution (alloy ! alliy) is higher than when performing deletion (alloy ! aloy) of 

i 

e 
g

y 

no y

no y 

no y

+ penalty 
o 

y 

input: alliy
begin: al 

 

Figure 3-4 An example of finding suggestions 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 25

a character. This information on penalty values is added to the lexicon. In the lexicon, following a 
sequence of nodes during the process of finding suggestions corresponds to a specific character 
transformation. For example, suppose the spell checker is searching suggestions for the string 
alliy. Then following the path from the second l via o to y yields a string (alloy) that can be 
transformed into alliy by substituting o by i. Thus, choosing this path corresponds with a 
substitution. Similarly, when searching suggestions for aloy, the path from l to another l 
corresponds with a deletion: the word that is found by following this path (alloy) can be 
transformed into aloy by deleting one character. Varying penalty values with various character 
transformations is in fact a variant on the minimum edit distance algorithm. The resulting penalty 
value is not equal to just the minimum number of editing operations but to a weighted minimum 
number of character transformations that is required for transforming one string into another. 
Not only orthographic character transformations, but also phonetic resemblance plays a role in 
weighting minimum edit distances for Polderland spell checking applications: substituting a 
character or character sequence with a phonetically resembling character (sequence) yields a 
lower penalty than substituting it with a character (sequence) that has no phonetic resemblance. 
For example, when searching for suggestions for the string bel, bell would get a lower penalty 
than belt. In the Polderland spell checkers, phonetic information consists of sets of characters or 
character sequences that phonetically resemble each other. This information, which varies with 
the language of the spell checking application, is added to the spell checker lexicon when 
building the spell checker.  
Other possibilities for varying penalty values, such as taking into account nearness on the 
keyboard (giving a lower penalty for character nodes that are more likely to be exchanged 
because the characters are close to each other on the keyboard) or knowledge on the probability 
of specific error types (e.g. first-character errors), are not used within the Polderland spell 
checkers. 
 
3.4.4. Ranking candidate corrections 

Having a list of alternatives for an incorrect string, the suggestions have to be ranked, in order to 
put the candidate correction that is most likely to be the intended word at the top of the list. As 
described in section 3.2.3, ranking could be based on minimum edit distance or word frequency. 
As explained in section 3.4.3, the minimum edit distance has been weighed based on specific 
character transformations and phonetic resemblance, resulting in the penalty value. Since penalty 
value aims to be a criterion for the probability of a suggestion being the correct suggestion, 
ranking is performed based on this penalty value. All suggestion strings have a specific penalty 
value that is lower than a predefined border value. However, not all suggestions necessarily have 
the same penalty value. The higher the penalty value of a suggestion, the lower this suggestion is 
ranked. 
 
 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 26

3.5. Problems for modern spell checking applications 

In the previous sections it was described how spelling error detection and correction works in 
modern spell checking applications in general and in Polderland spell checkers specifically. 
However, this method appears to be insufficient for some classes of errors. In this section, three 
problems for modern spell checking applications are discussed: the word boundary problem, the 
problem of short word errors and the problem of real-word errors. 
 
3.5.1. The word boundary problem 

One of the classifications that were described in section 2.1 is the distinction between errors 
within one word and word boundary errors. There are two sorts of word boundary errors: 
incorrect splits (e.g. together ! to gether) and run-ons (e.g. a lot ! alot). Approximately 15% of 
all errors are word boundary errors (Kukich, 1992b; Mitton, 1987). What exactly is the problem 
of word boundary errors?  
In nearly all spelling error detection and correction techniques, word boundaries are defined by 
white space characters. Incorrect splits and run-ons therefore yield a deviant number of words in 
the resulting sentence. This difference in number of words can give problems for error detection 
and/or correction. Run-ons are mostly a problem for correcting errors, whereas incorrect splits are 
a problem for both detecting and correcting.  
Incorrectly putting two words together, like mistyping of the as ofthe or misspelling kitchen door 
as kitchendoor, often yields a string that is not a lexicon entry (Mitton, 1987). Therefore, the word 
is detected as an error. In order to correct this error the spell checking application should be able 
to add white spaces at any position within the incorrect string. If adding a white space yields two 
lexicon entries, a valid suggestion has been found. Unfortunately, adding white spaces at any 
position within the incorrect string results in many possible combinations of words that have to be 
checked against the spell checker lexicon. This decreases the speed of the application. 
If a word has incorrectly been split up and results in two strings, detecting and correcting the error 
is more difficult. Incorrectly splitting a word often results in one or more strings that are lexicon 
entries themselves. Suppose an incorrect split results in two words of which one is a lexicon 
entry. Then this string is not detected, but the other string � which was not a lexicon entry � is. 
However, it is very difficult to correct this erroneous string, since neighbouring words are not 
taken into consideration for finding suggestions. For example, suppose together had been written 
as to gether. Since gether is not a lexicon entry, the string is detected as an error. But when 
searching suggestions the preceding word to is normally not taken into account, as a result of 
which together probably is not found as a suggestion because its penalty is too high. A solution 
could perhaps be found in taking into consideration adjacent words when searching suggestions. 
Unfortunately, this can also yield incorrect suggestions. For example, suppose a user misspells 
gather as gether in the sentence I try to gather all leaves. Then together is a suggestion for to 
gether. More research needs to be done in order to find out how big this problem is. Moreover, 
taking into account adjacent words will decrease the speed of the application. 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 27

When an incorrect split yields two lexicon entries instead of one, the error cannot be detected by 
lexicon-based spell checking techniques at all. 
Some applications that can correct word boundary errors have been studied. Kernighan (1991) 
designed a corrector for a text-to-speech application that handles run-ons by checking for 
deletions of white spaces at the same time it checks for other character deletions. Carter (1992) 
designed an application that was explicitly designed for correcting word boundary errors. This 
system was able to find the correct suggestion for 55% of 108 errors. Possibly, a large portion of 
word boundary errors involves a relatively small set of high-frequency function words (Kukich, 
1992b). Pollock and Zamora (1984) used this assumption for implementing the SPEEDCOP 
corrector, which checked for run-on errors involving function words. 
Despite these studies, word boundary errors are still a problem for modern commercial spell 
checking applications. 
 
3.5.2. The problem of short word errors 

Errors in short words were described in section 2.1. Short words were defined as words of two, 
three and four characters. Short word errors are a problem for automatic error detection and 
correction. This problem was noticed by Pollock and Zamora (1983). They found that 
misspellings in three and four character words constitute 9.2% of all misspellings but as much as 
42% of the wrong corrections. This means that 42% of all erroneous strings that do not get the 
correct suggestion are short strings. Thus finding the correct suggestion for an erroneous string is 
more difficult for short words than for long words. Landauer and Streeter (1973) argued that this 
is because high-frequency words are more likely to yield another lexicon entry when applying a 
single character transformation than low-frequency words. Since short words occur more 
frequently than long words (Park and Gero, 1999), short words are more likely to yield another 
lexicon entry. As errors resulting in lexicon entries cannot be detected using a lexicon-based spell 
checking technique, they cannot be corrected either. This results in a larger error correction 
problem for short words. 
Landauer and Streeter (1973) argued that short words are more likely to result in real-word errors 
when misspelled. Real-word errors themselves are also a problem for error detection and 
correction techniques. This problem is described in the next subsection. 
 
3.5.3. The problem of real-word errors for spelling error detection and correction 

Real-word errors are a problem for error detection and correction techniques. All modern 
commercial spell checking applications are lexicon-based: a lexicon is used to define which 
words are correct and which are not. Errors that yield a lexicon entry (i.e. a real word) therefore 
cannot be detected using a lexicon-based spell checking method. As real-word errors are defined 
as those errors that yield a lexicon entry, the amount of real-word errors varies with the size of the 
lexicon (Peterson, 1986). The larger the lexicon, the more real-word errors will occur. 
As described in section 2.1, the frequency of real-word errors is between 25% and 40% of all 
errors, dependent on text type. This means that, if a spell checking tool can detect and correct 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 28

real-word errors, its performance will improve drastically. This becomes even more clear when 
the frequency of real-word errors is combined with the performance of the modern isolated-word 
error correction techniques. Kukich (1992b) found that 15% of all non-word errors are word-
boundary errors and therefore cannot be corrected by isolated-word correction techniques. Thus, 
85% of all non-word errors can be corrected by isolated-word correction techniques. Kukich also 
found that the best isolated-word correction techniques correct approximately 78% of this 85%. 
This means that 66% of all non-word errors are corrected. Now suppose a real-word error rate of 
25% (Young et al, 1991). This means that 75% of all errors are non-word errors. 66% of this 75% 
is corrected by a relatively good isolated-word correction technique. This yields a total correction 
rate of 50%. Supposing a real-word error rate of 40%, (Mitton, 1987) only 66% of 60% of all 
errors is corrected, yielding a total correction rate of 40%.  
Supposing a real-word error rate of 25% and a correction rate for real-word errors equal to that 
for non-word errors (78%), a method for detecting and correcting real-word errors could 
theoretically raise the performance of a system with 19.5% (78% of 25%). This would improve 
the system�s correction rate from 50% to 69.5%. 
 
 
3.6. Techniques for real-word error detection and correction 

Context-sensitive error detection and correction aims at detecting and correcting real-word errors, 
which cannot be detected by isolated-word detection and correction techniques. As described in 
the previous section, modern lexicon-based spelling error detection and correction systems 
correct approximately 50% of all errors. As 25% to 40% of all errors are real-word errors, a 
method for detecting and correcting real-word errors would be useful. Several context-sensitive 
spell checking techniques have been suggested in the literature. There are two main types: 
methods based on probability information and methods based on semantic information. The study 
of Mays, Damerau and Mercer (1991) and the study of Golding and Schabes (1996) address 
methods based on trigram probabilities. The studies of St-Onge (1995) and Hirst and Budanitsky 
(2001) address methods based on semantic information. In this section, I describe and discuss 
these four studies. 
 
3.6.1. Methods based on probability information 

The study of Mays, Damerau and Mercer (1991) addresses the detection and correction of real-
word errors using word trigrams. They use a word trigram statistical language model based on a 
20,000-word lexicon. Unfortunately, their paper does not contain any information about the size 
of the corpus that they used for extracting trigram probabilities. As a test set, they use 100 correct 
sentences containing only lexicon words. Then they create a cohort for each sentence existing of 
similar sentences containing exactly one real-word error, generated by basic character 
transformations (insertion, deletion or substitution of one character or transposition of two 
characters). They compute the probability for each sentence in a cohort based on the probability 
of the trigrams of which the sentence consists. If the erroneous sentence does not have the highest 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 29

probability of its cohort then the error is detected. If the correct sentence has the highest 
probability of its cohort then the error is corrected. They obtain a detection score of 76% and a 
correction score of 74%.  
I have two points of criticism on the method for obtaining these results. First, the relatively small 
difference between detection score and correction score has been created by the presence of the 
correct sentence in the cohort. Suggestions are not generated from the corpus but are already 
present as alternatives. This could never be done in a real application, because the correct 
sentence would have to be known in advance. Second, it is not clear what results could be 
achieved if the test set contained real errors instead of artificially generated erroneous sentences 
all containing only one error generated by basic character transformations.  
Golding and Schabes (1996) created a method called Tribayes. For this method, they used the 
confusion sets from the list Words commonly confused in the back of the Random House 
Unabridged Dictionary (Flexner, 1983). Given a target occurrence of a word to correct, Tribayes 
substitutes in turn each word from the confusion set into the sentence. For each substitution, it 
calculates the probability of the resulting sentence based on part-of-speech trigrams. It selects as 
its suggestion the word that yields the sentence having the highest probability of all confusion 
sentences. This method has two disadvantages: the limited type of errors described by the 
confusion sets and the use of part-of-speech trigrams. The confusion list only contains sets of 
words that are commonly confused because of their similar meaning or form. Therefore, 
uncommon errors and typing errors are not considered. Furthermore, the list is finite: new 
confusable errors will never be corrected. The disadvantage of using part-of-speech trigrams is 
that only errors that yield syntactically incorrect sentences can be solved. A semantic error, like 
mistyping minutes as minuets, could never be corrected by using part-of-speech trigrams, since 
the part of speech is the same. 
 
3.6.2. Methods based on semantic information 

Real-word errors that result in a semantic anomaly without yielding a syntactically incorrect 
sentence are sometimes referred to as malapropisms. David St-Onge (1995) tries to solve the 
malapropism problem by using semantic word chains based on Wordnet. Every content word 
from the text is considered; function words are ignored because their semantic content is very 
low. The spell checker tries to add the word under consideration to a chain of semantically related 
words. If the word cannot be added, then it is regarded a malapropism. The program changes the 
word by inserting, deleting or moving one character and then tries to fit in the new word. The 
word that can be added to the chain is suggested to the user. 
Hirst and Budanitsky (2001) also try to solve the problem of malapropisms using semantic 
chains.  They work with the following algorithm. The spell checker marks a word as confirmed if 
(1) it occurs in the text more than once, (2) it occurs in the text as part of a known phrase or (3) 
within a window of n paragraphs there are one or more words with a sense related to the sense of 
the word under consideration. If an unconfirmed word w has a spelling variation (a valid word 
that is one or few basic transformations away from the original word) w� that would have been 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 30

confirmed if it had appeared in the text instead of w, the user is alerted to the possibility that w� is 
intended where w appears.  
A major disadvantage of methods based on semantic information, like the methods used by St-
Onge and Hirst and Budanitsky, is the fact that they ignore function words. Since function words 
are high-frequency short words, spelling and typing errors occur relatively often on these words 
(section 2.1). 
 
 
3.7. Conclusion 

In this chapter automatic spelling error detection and correction techniques have been described. 
After a definition and explanation of the term automatic spelling error detection and correction, 
the process of spelling error detection and correction and the performance of spell checking 
techniques have been described. All modern spell checking applications are lexicon-based and 
use a minimum edit distance algorithm. The performance of the spell checking application varies 
with lexicon size and the characteristics of the test set. Kukich (1992b) found that approximately 
78% of non-word errors could be corrected by isolated-word correction techniques in general. 
The performance of isolated-word correction techniques shows that there is a need for real-word 
error detection and correction techniques. 
To be able to build an application for context-sensitive spell checking, it is useful to know exactly 
how modern spell checking techniques function. Therefore, the spell checking algorithm of the 
Polderland spell checkers, which functions as an example for modern commercial spell checking 
applications in general, has been described. The Polderland spell checkers use a trie-structure 
lexicon that applies a technique based on a weighted minimum edit distance for finding 
suggestions. The fact that modern spelling error detection and correction techniques use a lexicon 
for detecting errors makes them incapable of detecting and correcting real-word errors. This 
problem has been discussed together with two other problems for automatic spelling error 
detection and correction techniques: the word boundary problem and the problem of short word 
errors. The problem of real-word errors is the main problem for the current research. As 25% to 
40% of all errors are real-word errors, a good method for detecting and correcting real-word 
errors would improve the performance of modern spell checkers drastically. Two methods for 
solving the problem of real-word errors have been described: methods based on probability 
information and methods based on semantic information. Altogether, four methods for context-
sensitive spell checking have been discussed. I had some criticisms on three of these methods: 
they exclude specific error types or specific word classes. The methods of St-Onge (1995) and 
Hirst and Budanitsky (2001) excluded errors in function words; Golding and Schabes (1996) 
excluded semantic errors. Moreover, Golding and Schabes used a precompiled, finite set of 
common spelling errors, resulting in a method that cannot detect and correct less common errors 
and (incidentally occurring) typing errors. Consequently, these three methods are not valid for 
solving the problem of real-word errors entirely. In my opinion, a method for context-sensitive 
spell checking should aim at detecting and correcting all types of real-word error regardless of the 



Context-sensitive spell checking  3. Automatic spelling error detection and correction 
  
 

 31

word class of the (resulting) word. In chapter 4, my solution to the problem of real-word errors is 
described. 
 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 32

Figure 4-1 The class of the intended context-sensitive spell checking application 

Automatic 
spelling error 
detection and 
correction 
techniques 

Human- 
generated 
errors 

Other errors  

Detection only Detection
and 
Correction 

Finding candidate corrections 

Choosing the most likely correction 

Fully automatic Interactive 

Finding candidate corrections 

Ranking candidate corrections 

4. Building a context-sensitive spell checker 

 
4.1. Introduction 

In section 3.5.3, the problem of real-word errors for automatic spelling error detection and 
correction was described: isolated-word (i.e. lexicon-based) detection and correction techniques 
cannot detect and correct real-word errors. Spelling error detection and correction methods that 
aim at detecting and correcting real-word errors are referred to as context-sensitive error 
detection and correction methods. In section 3.6, four methods for context-sensitive spell 
checking were discussed. I criticized three of these methods: they exclude specific error types or 
specific word classes. The methods of St-Onge (1995) and Hirst and Budanitsky (2001) excluded 
errors in function words; Golding and Schabes (1996) excluded semantic errors. Moreover, 
Golding and Schabes used a precompiled, finite set of common spelling errors, resulting in a 
method that cannot detect and correct less common errors and (incidentally occurring) typing 
errors. Consequently, these three methods cannot solve the problem of real-word errors entirely. 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 33

In my opinion, a method for context-sensitive spell checking should aim at detecting and 
correcting all types of real-word error regardless of the word class of the (resulting) word. In 
section 2.2, I defined which error types are considered as real-word errors in the current research. 
A context-sensitive spell checking method should aim at detecting and correcting all of these real-
word error types. In the current research, I aim at creating an interactive system for detecting and 
correcting human-generated real-word errors. In order to restrict the building process, the 
correction part of the algorithm is restricted to finding candidate corrections: no ranking is 
performed. An error is considered corrected if the correct suggestion is in the list of suggestions. 
The continued lines in figure 4-1 on page 32 illustrate where the intended context-sensitive spell 
checking application stands in the classification of automatic spelling error detection and 
correction techniques that was defined in section 3.2. The spell checking application should be 
able to detect and correct all classes of real-word errors in all classes of words. In this chapter, the 
spell checking method and algorithm that were developed for the current research are described.  
Starting point for building the context-sensitive spell checker is a lexicon-based spell checker. 
One of the main questions of the current research is �To what extent do the results of a lexicon-
based spell checker improve when the lexicon-based spell checker is combined with the context-
sensitive spell checker?� (See also chapter 1). Therefore, it is important to start from a well-
performing lexicon-based spell checker. The lexicon-based spell checker that is used in the 
current research is described in section 4.2. After that, the context-sensitive spell checking 
method is described in sections 4.3 and 4.4. In section 4.5, a comparison is made to the other 
context-sensitive spell checking methods which were described in section 3.6. 
 
 
4.2. Building a lexicon-based spell checker 

As mentioned above, a lexicon-based spell checker is used as the starting point for building the 
context-sensitive spell checker. But the lexicon-based spell checker also has a function within the 
context-sensitive spell checking algorithm. This function is explained in section 4.3. In this 
section, the lexicon-based spell checker that is the basis for the context-sensitive spell checker is 
described. It is important to have a well-performing lexicon-based spell checker, in order to 
prevent the performance of the context-sensitive spell checker to be negatively influenced by the 
performance of the lexicon-based spell checker. As described in section 3.4, the lexicon is the 
most important part of a lexicon-based spell checker. For a spell checking purpose, a lexicon has 
to have the following characteristics. First, it has to be large. In general, a lexicon has to contain 
at least several ten thousands of words to be suitable for spell checking purposes (naturally, 
lexicon size is dependent of language). Second, the lexicon has to contain words from the 
language (variety) for which the spell checker is built. Third, it is useful when a lexicon contains 
part-of-speech information of all words. This information can be used to add some linguistic 
information to the spell checker. For the current research, I chose to use the British English 
Source Lexicon (BESL) from Oxford University Press (OUP) because it is large, contains British 
English words and part-of-speech information. Moreover, it was available at that moment. 
Starting from BESL, a spell checker has been built according to the Polderland method for 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 34

building lexicon-based spell checkers. Since all Polderland spell checkers are suitable for spell 
checking in Microsoft Office, the BESL spell checker can be used in Microsoft Office too. In this 
section, it is described how the BESL spell checker has been built, starting from the BESL 
lexicon. In the first subsection (4.2.1), the format and content of BESL are described. Section 
4.2.2 describes how a spell checker lexicon has been created from BESL and in section 4.2.3, the 
features of the resulting spell checker are discussed. 
 
4.2.1. The British English Source Lexicon 

The British English Source Lexicon (BESL) has been created by Oxford University Press (OUP).  
BESL is a collection of seven British English lexicons published by OUP, which are: 
 

- Shorter Oxford English Dictionary (SOED),  
- Concise Oxford Dictionary (COD),  
- Pocket Oxford Dictionary (POD),  
- New Oxford Dictionary of English (NODE),  
- Concise Pronunciations Dictionary (CPD),  
- Oxford Spelling Dictionary (OSD), 
- Inhouse Resources (INC). 

 
The number of entries in BESL is 156,932. Within each entry in BESL it is indicated from which 
source(s) the word is taken. Many entries contain a number of subentries, which are declensions, 
conjugations or derivatives of the main entry. When all subentries are included, the total number 
of entries in BESL is 421,745.  
Figure 4-2 on page 35 contains a sample of the format of BESL. The example contains four 
entries. Between the tags <hw> and </hw> is the entry�s headword. Between every pair of 
<sube> and </sube> is a subentry; <pr> and <ph> mean pronunciation and phonetics 
respectively. <src> indicates the source(s) from which this entry is taken. 
 
4.2.2. Creating a spell checker lexicon from BESL 

A spell checker lexicon that is suitable for attaching to a Polderland spell checker (which is in 
turn suitable to be used within Microsoft Office) needs to have a fixed format. Starting from 
BESL, a word list can be extracted which has the right format to generate a Polderland spell 
checker lexicon from it. The structure of the Polderland spell checker lexicons was described in 
section 3.4.1. To extract an appropriate word list from BESL, a few steps have to be taken. 
The first step is extracting from BESL a word list that only contains word forms and their parts of 
speech. Therefore, all entries and subentries and their parts of speech have to be extracted from 
BESL. In appendix IV-1, a Perl program is presented for extracting this information from BESL. 
The resulting word list has the format <word><tab><category>.  



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 35

Figure 4-2 Format of BESL 

<se ty=s id=53893><hw>handle</hw><ps>n.<hm>2</hm> &amp. m4.1</ps><sube> 

<form>handle</form><sps>n.</sps><pr or=Br><ph>"handl</ph></pr></sube><sube> 

<form>handles</form><sps>pl.</sps><pr or=Br><ph>"handlz</ph></pr></sube> 

<srcs><src>SOED</src><src>CPD</src><src>COD</src><src>POD</src></srcs></se> 

 

<se ty=s id=53895><hw>handle</hw><ps>v.<hm>2</hm><gr>t.</gr> &amp. 

m4</ps><sube><form>handle</form><sps>v.</sps><pr or=Br> 

<ph>"handl</ph></pr></sube><sube><form>handles</form><sps>present</sps><pr or=Br> 

<ph>"handlz</ph></pr></sube><sube><form>handled</form><sps>past</sps><pr or=Br> 

<ph>"handld</ph></pr></sube><sube><form>handling</form><sps>gerund</sps><pr or=Br> 

<ph>"handl=IN</ph><vph>"handlIN</vph></pr></sube><srcs><src>SOED</src> 

<src>CPD</src><src>COD</src><src>POD</src></srcs></se> 

 

<se ty=s id=53896><hw>handleability</hw><ps>n. &amp. m9</ps><sube> 

<form>handleability</form><sps>n.</sps><pr 
or=Br><ph>%handl@"bIl1ti</ph><vph>%handl=@"bIl1ti</vph></pr></sube> 

<srcs><src>CPD</src></srcs></se> 

 

<se ty=s id=53897><hw>handleable</hw><ps>a. &amp. m9</ps><sube> 

<form>handleable</form><sps>a.</sps><pr 

or=Br><ph>"handl@bl</ph><vph>"handl=@bl</vph></pr></sube> 

<srcs><src>CPD</src></srcs></se> 

The resulting word list contains a few difficulties for converting it into a Polderland spell checker 
lexicon. Therefore, the second step is editing it. This editing exists of removing multi-word 
entries, replacing hyphens by double hyphens and filling gaps in the part-of-speech field. Multi-
word entries like age range and city center have to be removed from the word list because a text 
is checked on word level and not beyond word borders. Hyphens within words (A-road and spin-
off) have to be replaced because in a Polderland spell checker lexicon a hyphen means a possible 
word break at the end of the line. Double hyphens (A--road, spin--off) in the lexicon are 
interpreted as real hyphens by the spell checker. Gaps in the part-of-speech field have to be filled 
with a dummy tag W (for word). The Perl program that was used to execute these three editing 
steps is shown in appendix IV-2. 

After editing, the field <word> in the word list contains all entries and subentries from BESL and 
the field <category> contains the corresponding part-of-speech tags from BESL. As a Polderland 
spell checker cannot interpret these part-of-speech tags, the BESL tags have to be replaced by 
Polderland tags. For Polderland spell checker lexicons, the field <category> contains two items: a 
part-of-speech tag and a position tag. The possible part-of-speech tags are V (verb), N (noun), J 
(adjective) and U (number). All remaining words have W (word). The position tag indicates 
whether a word can be an independent word (I), the left part of a compound (L) and/or the right 
part of a compound (R). English does not have the possibility of making one-word compounds: 
semantic compounds are written as two words. Therefore, all words in the word list get the 
position tag I.  Thus, the third step that has to be taken in order to create an appropriate word list 
is replacing the BESL part-of-speech tags (adv, pron, prep, conj, int, a, n and v) by the Polderland 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 36

part-of-speech tags and position tags. If a word has more than one part-of-speech tag, this results 
in more than one entry in the spell checker lexicon. 
The final step is replacing ASCII codes (e.g. &agra., &eacu. and &iuml.) within the word list by 
diacritics (e.g. à, é and ï). 
Figure 4-3 contains a sample of the format of the resulting word list. 

The word list now has a suitable format to generate a Microsoft spell checker lexicon from it. For 
this purpose, Polderland has an application called mklex. Input for mklex is a text-readable file 
and output is a trie-structure lexicon with extension .lex. This output file, which is the BESL 
lexicon in the format of a Polderland spell checker (i.e. a trie structure), can be attached to 
Microsoft Office. 
 
4.2.3. Features of the BESL spell checker 

The BESL spell checker was built according to the Polderland method for building lexicon-based 
spell checkers. Therefore, the BESL spell checker is in the same spell checking application class 
as the Polderland spell checkers, which were described in section 3.4. The structure of the 
Polderland spell checkers and how they function were also described in section 3.4. In that 
section, the three basic steps of error detection and correction were denoted: detecting errors, 
finding candidate corrections and ranking candidate corrections. For the BESL spell checker 
these three steps function as described in section 3.4. Some choices still have to be made 
regarding penalty definitions. It is possible to predefine various penalty values for various kinds 
of paths that are chosen when generating a suggestion. In the BESL spell checker, variant penalty 

Figure 4-3 Format of the word list extracted from BESL 

handle NI 

handle VI 

handleability NI 

handleable JI 

handlebar NI 

handlebars NI 

handled JI 

handled VI 

handleless JI 

handler NI 

handlers NI 

handles NI 

handles VI 

handless JI 

handline VI 

handlined VI 

handlines VI 

handling VI 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 37

values for different character transformations are taken into account as well as phonetic 
information. The penalty configurations for different character transformations and the phonetic 
information are both defined when creating the spell checker lexicon. It is possible to run mklex 
on a word list using an extra parameter, which is the name of a file containing these penalty 
configurations and the phonetic information. This information is then included in the resulting 
spell checker lexicon. Appendix I shows part of the content of phonrulesEN.txt, which is the 
configurations file that was used for the BESL spell checker. In the first part of the file, Match 
Penalties, the penalty values for various character transformations are defined. These are relative 
values. They mean for example that doubling (doub) a character (chosen ! choosen) yields a 
penalty that is twice as high as substituting (sub) a character (alloy ! alliy). The rest of the file, 
Match Rules, consists of phonetic rules for English. For several sets of character sequences, the 
phonetic resemblance is defined. These definitions are used for giving a relatively low penalty 
when choosing a character sequence that phonetically resembles the original character sequence. 
For example, rule 27 indicates that the character sequences Mc and Mac are phonetically exactly 
equal; hence the declaration twin in the middle column. The third column gives an example of a 
context in which the character sequences are phonetically equal. Rule 28 indicates that the 
sequences sch and sk are phonetically similar but not exactly equal; hence the declaration kin in 
the middle column. In the first part of the phonrules-file, Match Penalties, it has been declared 
that exchanging a character sequence by its twin, kin or cousin yields a relatively low penalty. In 
case of sch, this means that replacing the sequence by sk yields a penalty value 1, whereas 
replacing it by sl yields a penalty value 2 (i.e. one substitution and one deletion). 
In the current research, the penalty configurations of the lexicon-based spell checker should be 
chosen in a way that optimises the performance of the context-sensitive spell checker6. Context, a 
program developed by Polderland, enables the user to test the consequences of changing the spell 
checker�s penalty configurations. When a spell checker lexicon is attached to Context, a number 
of candidate corrections (suggestions) for an input word in Context are given. It is also possible to 
give a lexicon entry as an input word; then the words are found that the most resemble the input 
word. The program Context is also useful for testing the consequences of changing the penalty 
configurations for the performance of the spell checker in general.  
By changing the lexicon configurations, a spell checker lexicon can be created that optimises the 
performance of the context-sensitive spell checker. The results of optimising these configurations 
are described in section 5.3. 
 
 
4.3. The context-sensitive spell checking method and algorithm 

The BESL spell checker, which was described in the previous section, is an important component 
of the context-sensitive spell checker. In this section the context-sensitive spell checking method 
is described. In section 4.3.1, the choice for the spell checking method that is used in the current 

                                                   
6 How the features of the lexicon-based spell checker can influence the performance of the context-
sensitive spell checker is described in section 4.3. 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 38

research is motivated. In section 4.3.2, the resulting context-sensitive spell checking algorithm is 
described. 
 
4.3.1. Motivation for the context-sensitive spell checking method 

As mentioned in the introduction to the current chapter, a method for context-sensitive spell 
checking should aim at detecting and correcting all types of real-word error, regardless of the 
word class of the (resulting) words. Therefore, I aim at creating a context-sensitive spell checking 
method that can detect and correct typing errors as well as spelling errors and syntactic errors as 
well as semantic errors. This demand has three consequences. First, detecting and correcting all 
classes of errors in all classes of words implies detecting and correcting all errors that could 
possibly be made. The spell checking algorithm should therefore not only be designed for 
detecting and correcting a predefined, finite set of errors, such as a set of commonly made errors, 
but it should also be able to detect and correct errors that are less common. Second, a context-
sensitive spell checking method that is able to detect and correct semantic errors as well syntactic 
errors should not be based exclusively on syntactic features of words. Suppose we have a spell 
checking algorithm that uses part-of-speech information for determining whether a specific 
sentence is correct or not. Such an algorithm could use a database containing relative frequencies 
of part-of-speech trigrams. For example, in English, the part-of-speech trigram ART N V probably 
has a higher relative frequency than ART PREP V. In a context-sensitive method based on syntactic 
features, this probability information is used to determine whether a specific sequence of parts of 
speech is correct. For example, the trigram the from is could be detected since ART PREP V 
probably is a low-frequent part-of-speech trigram. Changing one character yields ART N V (the 
form is), which probably has a higher relative frequency. Such an algorithm would not be able to 
detect semantic errors, because in case of a semantic error the erroneous word has the same part 
of speech as the intended word. For example, suppose someone mistypes minutes as minuets. 
Since both words have the same part of speech (i.e. N  plural), the erroneous and intended part-of-
speech trigram are exactly the same. Therefore, a method based exclusively on syntactic features, 
is not able to detect and correct semantic errors. 
Third, a spell checking method that is able to detect and correct errors in all classes of words 
should not exclude function words. This implies that the method should not be based on semantic 
features of words. Since function words have very low semantic content, a semantic method 
would not be able to detect and correct errors in function words. In section 3.6, a distinction was 
made between methods based on probabilistic information and methods based on semantic 
information. The third demand implies that a method for detecting and correcting all types of 
real-word error in all classes of words should not be based on semantic information, thus it should 
be based on probabilistic information. The second demand implies that syntactic features of 
words should not play an exclusive role in determining whether a specific string is correct or not. 
These two assumptions (the method should be based on probabilistic information and not 
exclusively on syntactic information) result in a context-sensitive spell checking method based on 
word (form) probability information. I chose to create a detection and correction algorithm that 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 39

uses information on probabilities of word trigrams7. This means that sequences of three words are 
considered instead of words in isolation. To check whether a specific trigram in the text contains 
a real-word error, the probability of that trigram is determined. If its probability is very low, then 
the trigram is considered erroneous. For example, suppose someone misspells of as off in the 
trigram in case of. Then the resulting trigram in case off will have a lower frequency of 
occurrence than the intended trigram in case of. The information on trigram probabilities is 
extracted from a large corpus. This is described in section 4.4. First, the context-sensitive spell 
checking algorithm is described in detail in the next subsection. 
 
4.3.2. The context-sensitive spell checking algorithm 

As described above, the context-sensitive spell checking algorithm of the current research uses 
probability information to determine whether a specific word trigram contains a real-word error. 
The context-sensitive spell checking algorithm performs detection and correction. Both steps are 
described separately in this section. 
The detection algorithm performs three main steps. First, the text that has to be spell checked is 
split up in trigrams. At every word a new trigram starts, resulting in a number of trigrams equal to 
the number of words in the text minus two. For example, the five-word sentence Please fill in the 
form is split up in the three trigrams please fill in, fill in the and in the form.  
Second, for each trigram it is checked whether all three words are in the BESL spell checker 
lexicon. This check would not have to be executed when the lexicon-based spell checker and the 
context-sensitive spell checker would have been combined into one spell checking application. In 
that case, the lexicon-based spell checker would perform non-word error detection and correction 
before the context-sensitive spell checker would perform real-word error detection. Then the 
input of the context-sensitive spell checker would not contain non-word errors and this second 
step would not have to be executed. However, in the current research, a stand-alone context-
sensitive spell checker is built in order to be able to test it separately from the lexicon-based spell 
checker. Thus, the lexicon check is performed: if one or more words from the trigram are not in 
the spell checker lexicon, the trigram contains a non-word error and is it not considered further, 
because non-word errors are not in the scope of context-sensitive spell checking. This means that 
in the current research, there are still non-word errors in the text after the context-sensitive spell 
checker checked it for real-word errors. Looking up each word of every trigram in the lexicon 
implicates that most words from the text are checked three times (once for every trigram it is part 
of). This way, the program does not have to �remember� which word is correct and which one is 
not. This is done to save memory space. In the chosen algorithm, the �memory� of the system is 
restricted to the trigram under consideration.  
Third, every trigram is looked up in a precompiled database containing a list of trigrams and their 
number of occurrence in the corpus used for compiling the database. If the trigram is in the 
trigram database, the trigram is regarded correct and it is not considered further. If the trigram is 

                                                   
7 A trigram is a sequence of three units. These units can be characters, phonemes, words or parts of speech. 
In the current research, the term trigram refers to a word trigram. 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 40

not in the trigram database, then the trigram is considered too unlikely and therefore detected as 
an erroneous trigram containing a real-word error.  
The correction algorithm performs an additional three steps. When a trigram has been detected, 
one or more of the three words is considered erroneous, but which of the three is not known. 
Therefore, candidate corrections for all three words are sought. The BESL spell checker lexicon 
is used to find candidate corrections for all three words of the trigram. This is the first step of the 
correction algorithm. When all possible candidate corrections for all three words have been 
found, these are all put together resulting in candidate corrections for the trigram as a whole. The 
third step is looking up each of these candidate correction trigrams in the trigram database. The 
trigrams that are in the database are considered more likely to be intended by the user than the 
detected trigram and are therefore suggested to the user. 
See figure 4-4 on page 41 for a graphical representation of this context-sensitive spell checking 
algorithm with the example sentence Would you please fill in the from?, in which from is 
erroneous because form was intended. For implementing this spell checking algorithm, a Perl 
program was written. This Perl program is described in more detail in section 5.3. 
 
 
4.4. Building the trigram database 

As a source for compiling a trigram database, I chose to use the written part of the British 
National Corpus (BNC), which contains 90 million words of written British English text. The 
trigrams from the BNC and their numbers of occurrence are stored in a large database. 
 
4.4.1. The British National Corpus 

For building a trigram database that contains a large amount of English trigrams, a corpus of 
written text is needed. As the lexicon-based spell checker uses a lexicon of British English, the 
corpus for extracting trigrams should also be a corpus of British English. The British National 
Corpus (BNC) has been chosen for this purpose. 
The British National Corpus is a 100 million-word corpus of British text. Ninety percent (90 
million words) of the corpus consists of written texts and ten percent (10 million words) consists 
of spoken texts. The BNC is a sample corpus, which means that it is composed of text samples 
instead of whole texts. These text samples are generally no longer than 45,000 words. The corpus 
is not restricted to any particular subject field, register or genre, but it is restricted to one 
language: British English. According to the designers of the BNC, the size of the corpus as a 
whole, as well as the size of respectively the written and the spoken parts would be large enough 
to yield valuable empirical statistical data. 
 
 



 
  

 41

 

Would you please fill in the from? 

you please fill

Would you please please fill in in the from 

fill in the 

Trigram list
 
trigram            nr of 

occurrences
 
a babbler talks  1
a baby boy 6
a baby cries 8
a baby girl 5
a baby is  5
a baby wants 1
a baby-sit talk 1
a back seat 6
a back with 1
a backache hurts 1
a backache is 1
a backbone does  1
a backbone with 1
a backer likes 1
a backer without 1
� 
in the foam 1
in the form 2
� 
� 
� 
� 
� 
 

All 3 words in spell checker lexicon and trigram not in trigram
database ! real-word error detected 

Real-word error detected: in the from

in the form 

in the foam 

on the from 

New trigram in database ! trigram is suggested to user
Suggestions: 
in the form 
in the foam 

Sp
el

l c
he

ck
er

 le
xi

co
n 

in
the 

from 

word splitter

All combinations of all 
candidate corrections ! 
candidate correction trigrams 

in
the 

from 

word splitter 

Search for 
candidate 
corrections for 
all 3 words 

Not all 3 words in lexicon 
! non-word error ! stop 
considering this trigram 

Trigram is in database !
no real-word error ! stop 
considering this trigram 

Figure 4-4 A graphical representation of the context-sensitive spell checking algorithm 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 42

4.4.2. The algorithm for extracting trigrams 

Extracting trigrams from the written part of the BNC is done by means of a Perl script. In the 
algorithm for extracting trigrams, a word is defined as a character sequence bordered by white 
spaces. Semantic compounds (e.g. kitchen door) are therefore considered as two words. The 
algorithm removes all punctuation and capitals, as a result of which the trigrams he asked, �why� 
and He asked why are the same (i.e. he asked why). As the algorithm removes punctuation, 
sentence borders are removed too. Moreover, text borders are also removed, in order to facilitate 
the extracting process. As a result, some trigrams consist of one or two words from one text and 
one or two words from another text, but this is a relatively small number of trigrams. The written 
part of the BNC consists of approximately 90 million words, which corresponds with 90 million 
minus two trigrams. These words are in 4424 texts. This means that there are 4423 text borders. 
For each text border, there are two trigrams that consist of words from two texts (one has two 
words from the first text and another has two words from the second text). This means that in the 
trigram database, there are 8846 trigrams that cross a text border. On 90 million trigrams, this is 
one out of every ten thousand.  In fact, the number of trigrams that cross a sentence border is not 
negligible. Supposing an average of twenty words per sentence, the written part of the BNC 
contains 4,5 million sentences, which corresponds to 9 million trigrams that cross a sentence 
border. This is one in every ten trigrams. Fortunately, this is unproblematic, since in the text that 
is spell checked sentence borders are also removed. 
Each trigram from the BNC is stored in the trigram database. If the trigram is already present in 
the database, its number of occurrences is increased with one. There appear to be 6,132,751 
different trigrams in the written part of the BNC. 
Obviously, not all trigrams are unique. 1,687 of the trigrams occur more than one hundred times 
and nineteen of them occur more than one thousand times. The ten most frequently occurring 
trigams from the BNC and their numbers of occurrence are given in table 4-1. 
 
Table 4-1 The ten most frequently occurring trigrams  
Trigram number of occurrence 
one of the 3467 
the end of 2173 
out of the 1729 
as well as 1680 
part of the 1395 
it was a 1372 
end of the 1370 
there is a 1347 
per cent of 1305 
some of the 1293 
 
 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 43

4.5. Comparison to other context-sensitive spell checking methods 

As described in section 4.3.1, the method for context-sensitive spell checking that I chose for the 
current research aims at detecting and correcting all types of error regardless of the word class of 
the (resulting) word. Three of the four methods discussed in section 3.6 are not able to detect and 
correct all classes of real-word errors in all classes of words. Only Mays, Damerau and Mercer 
(1991) included all types of errors in all classes of words. They created a method based on word 
trigram probabilities. Therefore, my method resembles theirs most. However, there are some 
important differences between my method and their method.  
First, a method based on word trigram probabilities requires a database of trigrams and their 
relative frequency. The source that Mays et al. used for compiling such a database is not clear. 
For compiling my trigram database, I used the British National Corpus (BNC). Second, the 
algorithm of Mays, Damerau and Mercer works at sentence level: the likelihood of a sentence is 
computed from the probabilities of all trigrams in the sentence. In my algorithm, every trigram is 
considered separately: the probabilities of sentences are not calculated. Third and most important: 
the algorithm of Mays, Damerau and Mercer uses sentence cohorts from which the sentence that 
has the highest likelihood is chosen. A cohort contains the correct sentence and a number of 
constructed erroneous deviations from the correct sentence. Thus, the correct sentence is always 
present in the cohort and therefore it is always chosen when its probability is higher than the other 
sentences in the cohort. In my case, the correct trigram is not necessarily present in the trigram 
database, thus the chance that it is chosen as a suggestion is much smaller. On the other hand, my 
method can be used on real (i.e. unknown) data whereas the method of Mays, Damerau and 
Mercer only functions in a test environment where the correct sentence is known in advance. 
Obviously, this is never the case in a real application. 
 
 
4.6. Conclusion 

In section 3.6, four methods for context-sensitive spell checking were discussed. Three of these 
methods are not very suitable in my opinion, because they are not able to detect and correct all 
types of real-word errors in all classes of words. In the current research, I aim at creating a 
context-sensitive spell checking method that can detect and correct semantic real-word errors as 
well as syntactic real-word errors, those resulting from typos and those resulting from spelling 
errors.  
A method that is able to detect and correct all types of real word errors in all classes of words has 
to satisfy three demands. First, the method should not be able to detect and correct a finite set of 
errors only; second, the method should not be based exclusively on syntactic features of words; 
third, the method should not be based on semantic information. These three demands lead to a 
method based on word trigram probability information. Starting point for this context-sensitive 
spell checking method is a lexicon-based spell checker. By changing the configurations of the 
lexicon-based spell checker, a lexicon can be created that optimises the performance of the 
context-sensitive spell checker. The results of optimising these configurations are described in 



Context-sensitive spell checking  4. Building a context-sensitive spell checker 
 
  

 44

section 5.3. Another important element of the context-sensitive spell checking application is a 
database containing trigrams and their relative frequencies. This database has been extracted from 
the written part (90 million words) of the BNC. 
Compared to other context-sensitive spell checking methods, I concluded that the only method 
besides mine that is able to detect and correct all classes of real-word errors in all classes of 
words is the method of Mays, Damerau and Mercer (1991). However, there are some important 
differences between their method and mine. The most important difference is that my method can 
be used on real (i.e. unknown) data whereas the method of Mays, Damerau and Mercer only 
functions in a test environment where the correct sentence is known in advance. Obviously, this is 
never the case in a real application. Therefore, the method of Mays, Damerau and Mercer is less 
valid for detecting and correcting errors in real human-written texts than mine. 
In chapter 5, the performance of my method for context-sensitive spell checking is evaluated. 
 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 45

5. The performance of the spell checking application 

 
In this chapter the performance of the spell checking application, which was described in chapter 
4, is evaluated. To be able to obtain valid results and to interpret them properly, it is important to 
know how to evaluate a spelling error detection and correction system in general, i.e. how to 
measure the performance of a spell checking application. Therefore, some general methods for 
evaluation are described in section 5.1. After that, the results of the current research are described 
and discussed. The results can be divided into two parts: the performance of the lexicon-based 
BESL spell checker (section 5.2) and the performance of the context-sensitive spell checker 
(section 5.3). 
 
 
5.1. Evaluating a spelling error detection and correction system 

 
In the literature, several methods for evaluating a spelling error detection and correction system 
have been proposed. The most frequently used methods for measuring this performance are 
described in section 5.1.1. After that, the method used for the evaluation of Polderland spell 
checkers is described in section 5.1.2. This method is a good example of how the evaluation of 
spell checkers is carried out in practice and I will use (parts of) this evaluation for the evaluation 
of the BESL spell checker and the context sensitive spell checker.  
 
5.1.1. Performance measures 

Two frequently used measures for evaluating a spell checking application are precision and recall.  
In general, precision denotes a system�s accuracy and recall indicates a system�s coverage. 
However, the definitions of both measures vary between studies. To illustrate this, I first describe 
the definitions used by TEMAA, a Danish project for natural language processing evaluation, 
before I describe my own definitions.  
 
The definitions for recall and precision used by TEMAA 
TEMAA defines recall as the degree to which the checker accepts all the valid words of a 
language and precision as the degree to which the checker rejects all the invalid words. These 
definitions for precision and recall are used in other studies too. TEMAA also uses a third 
measure, suggestion adequacy, which is defined as in case of invalid words, does the checker 
provide correct suggestions.  
The definitions used by TEMAA are not used in many studies. Most studies use definitions for 
precision and recall that are similar to the definitions that are used in the current research. These 
definitions are described below.  
 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 46

My definitions for recall and precision 
First, I make a distinction between detection recall and correction recall. As described in section 
3.1, detection is defined as an incorrect string being flagged by the system. For an interactive 
system, correction is defined as the intended word being at the top of the list of candidate 
corrections, or � when no ranking is performed � the intended word being present in the list of 
candidate corrections. Following these definitions, I define detection recall, correction recall and 
precision as follows:  
 

- Detection recall:  the number of correctly detected strings divided by the total number of 
erroneous strings in the text.  

- Correction recall:  the number of corrected erroneous strings divided by the total numbers 
of erroneous strings in the text.  

- Precision: the number of correctly detected strings divided by the total number of 
detected strings.  

 
For computing detection recall as well as precision the number of correctly detected strings is 
required. A string is correctly detected if it has been detected and it is indeed erroneous. An 
incorrectly detected string is referred to as a false hit.  
The definitions used by TEMAA are opposite to mine: in TEMAA�s definition, recall denotes the 
coverage of correctly spelled words, whereas in my definition, detection recall denotes the 
coverage of errors. In TEMAA�s definition set, precision has this latter denotation.  
I prefer my set of definitions over TEMAA�s because TEMAA�s definition set needs a third 
measure (suggestion adequacy), whereas my definition set has been expanded by dividing recall 
into detection recall and correction recall, which is less complicated and more intuitive. 
Moreover, my definitions of precision and recall correspond to the definitions that are normally 
used in the evaluation of information retrieval systems. That makes my definitions less confusing 
than those used by TEMAA. 
In practice, precision and detection recall are oppositely related to each other: a system that has a 
high precision has a relatively low recall and vice versa. 
Detection recall, correction recall and precision are used in the current research for measuring the 
performance of both the lexicon-based BESL spell checker and the context-sensitive spell 
checker. How this is done, is described in the sections 5.2 and 5.3. First, the Polderland method 
for measuring the performance of a lexicon-based spell checker is described. 
 
5.1.2. Polderland�s methods for measuring performance 

Polderland has developed two methods for testing the performance of a lexicon-based spell 
checker. The tests have been built in Microsoft Visual Basic and can be executed with a macro in 
Microsoft Word. Therefore, only lexicon-based spell checkers that are accessible in Microsoft 
Office can be tested by these methods. As described in section 4.2, all Polderland spell checkers 
are suitable for spell checking in Microsoft Office.  



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 47

Both testing methods, the coverage test and the suggestion test, calculate the performance of a 
spell checker and give the possibility to compare the results to the performance of other lexicon-
based spell checkers for the same language. The two tests are described below. 
 
Coverage test 
The coverage test aims to measure the spell checker�s coverage of correctly spelled words. In 
order to perform a valid coverage test, a large amount (more than 100.000 words) of text is 
required. The coverage test is executed for two or more spell checkers for the same language 
consecutively. For each spell checker the same (Microsoft Word) documents are used. The test 
counts the total number of words in the text and the number of words that are flagged by the spell 
checker. Coverage is determined from the number of flagged words divided by the total number 
of words. The spell checker that flags the highest number of words has the lowest coverage. 
Therefore, it is important that the test texts contain no or very few errors. The larger the amount 
of test texts is, the more reliable the coverage test will be. 
 
Suggestion test 
The suggestion test can be used for measuring detection recall, correction recall and precision. As 
described in section 5.1.1, the number of correctly detected errors is required for computing 
detection recall and precision. For computing correction recall, the number of erroneous words 
that got the correct suggestion is required. For that reason, a text containing errors is not sufficient 
for performing the suggestion test. The erroneous words and their corrections have to be known 
in order to be able to compute recall and precision. Therefore, a test document for the suggestion 
test consists of pairs of erroneous words and their corresponding correct words. The test can be 
executed for both spell checkers at the same time: all word pairs occur twice in the test document 
and for each half of the document another spell checker can be active. Since the spell checkers 
check the same pairs of words, the results can legitimately be compared.  
The following counts are performed. The text between brackets refers to the labels shown in 
appendix II-1, which is the user interface of the suggestion test. 
 

- The number of words that have been detected by one spell checker (A errors); 
- The number of words that have only been detected by one spell checker (just A); 
- The number of words that received a correct suggestion (correct suggestions); 
- The number of words that have incorrectly been detected (falsely false8); 
- The number of words that have been detected by both spell checkers (spelling errors both 

for A and B). 
 
The suggestion test does not count the total number of errors in the test document, thus this 
quantity has to be counted separately. When the total number of errors in the test document and 

                                                   
8 The suggestion test does not only count the number of falsely false words, it also gives a list of falsely 
false words (see in appendix II-1 the label falsely false words). Falsely false words are referred to as false 
hits in the current research. 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 48

the number of correctly detected strings are known, detection recall, correction recall and 
precision can be computed. For computing detection recall and precision, the number of correctly 
detected errors is required. This is the total number of detected errors minus the number of 
incorrectly detected errors, the latter being the number of false hits. Thus, the number of correctly 
detected errors by spell checker A can be computed as follows (expressed using the labels from 
appendix II-1): 
 

(1) Nr correctly detected A = A errors � falsely false  
 
Detection recall, correction recall and precision can then be defined as follows (expressed using 
the labels from appendix II-1): 
 

(2) Detection recall A = Nr correctly detected A / Total nr errors in document 
 

(3) Correction recall A = Nr correct suggestions A / Total nr errors in document 
 

(4) Precision A = Nr correctly detected A  / A errors 
 
 
5.2. The performance of the BESL spell checker 

Section 4.2 described how the lexicon-based BESL spell checker was built according to the 
Polderland method for building spell checkers. The BESL spell checker was built in service of the 
context-sensitive spell checker. The lexicon of the BESL spell checker is used twice within the 
context-sensitive spell checker (see section 4.3.2). There are two important reasons for measuring 
the performance of the BESL spell checker. In the first place, it is important to know the 
performance of the lexicon-based spell checker itself in order to be able to answer one of the 
main questions: to what extent does the performance of a lexicon-based spell checker improve 
when the context-sensitive spell checker would be combined with it? Secondly, it is important to 
know the performance of the BESL spell checker because the performance of the context-
sensitive spell checker is (partly) dependent on it, since the suggestions made by the lexicon-
based spell checker are the basis of the suggestions for the detected trigram as a whole. 
For these two reasons, two separate tests are needed. First, a test is required that can test the 
performance of the BESL spell checker when used independent of the context-sensitive spell 
checker. This is the performance of the BESL spell checker for detecting and correcting errors in 
general. Second, a test for measuring the performance of the spell checker within the context of 
the context-sensitive spell checker is required. Within the context-sensitive spell checker, the 
BESL spell checker is used for finding suggestions for real words. Therefore, the second test 
should be able to measure the performance of the BESL spell checker for generating suggestions 
for real-word errors. Both tests have been executed. In the next two subsections, both tests and 
the results are discussed respectively. 
 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 49

5.2.1. Performance of the BESL speller for detecting and correcting errors in general 

In order to know the performance of the BESL spell checker, a test is required that can determine 
values for detection recall, correction recall and precision. In section 5.1.2, the suggestion test 
was described. From the results of this test detection recall, correction recall and precision can be 
computed. Therefore, I chose to execute a suggestion test for measuring the performance of the 
BESL spell checker. As described in section 5.1.2, the suggestion test requires sets of erroneous 
words and their corresponding correct words.  For the current test, these sets have been taken 
from the British English part of the International Corpus of English (ICE-GB), in which errors 
have been marked. There are 454 sets in the test document. It contains instances of all classes of 
errors that have been defined in section 2.2, table 2-2. These classes are repeated below, including 
an example from the ICE-GB test set for each class. 
 

- Typing errors, e.g. with ! wih 
- Errors due to a cognitive or phonetic lapse, e.g. competent ! competant 
- Grammatical errors, e.g. this ! these 
- Non-word errors, e.g. their ! thier 
- Real-word syntactic errors, e.g. they ! the 
- Real-word semantic errors, e.g. complementary ! complimentary 

 
The suggestion test has been executed on these 454 sets of words. The user interface of the test 
can be found in appendix II-2. This picture shows the results of two spell checkers, called X and 
POLDERLAND. X is the Microsoft spell checker for British English and POLDERLAND is the BESL 
spell checker. Appendix II-2 shows that the BESL spell checker flagged more strings than the 
Microsoft spell checker, but less of the detected strings received the correct suggestion and there 
are more false hits. 
From the results of this test, detection recall, correction recall and precision can be computed: 
 

(5) Nr correctly detected Microsoft = 293 � 25 = 268 
(6) Detection recall Microsoft = 268 / 454 = 0.59 
(7) Correction recall Microsoft = 226 / 454 = 0.50 
(8) Precision Microsoft = 268 / 293 = 0.91 
 
(9) Nr correctly detected BESL = 306 � 39 = 267 
(10) Detection recall BESL = 267 / 454 = 0.59 
(11) Correction recall BESL = 214 / 454 = 0.47 
(12) Precision BESL = 267 / 306 = 0.87 

 
The performance measures for both the BESL spell checker and the Microsoft spell checker are 
also given in table 5-1. 
 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 50

Table 5-1 Results of the macro test for BESL spell checker and Microsoft spell checker 
Measure BESL spell checker Microsoft spell checker 
Detection recall 0.59 0.59 
Correction recall 0.47 0.50 
Precision 0.87 0.91 
 
The results for correction recall and precision show that the Microsoft spell checker performs a 
little better than BESL spell checker, but the difference is small (respectively 0.50 and 0.47 
correction recall). To know whether the correction recalls of both spell checkers really differ, a 
significance test is required. This test shows that the spell checkers perform equally well.9  
However, recall is small for both spell checkers: 0.59 detection recall and about 0.50 correction 
recall. This corresponds with the expectation that 50% of all errors are corrected by lexicon-based 
non-word error techniques (see section 3.5.3). This expectation is based on a real-word error rate 
of 25% of all errors. 
 
5.2.2. Performance of the BESL speller for generating suggestions for real-word errors 

The lexicon of the lexicon-based spell checker is used twice within the context-sensitive spell 
checker. First, the lexicon-based spell checker checks for all three words in a trigram whether 
they are lexicon entries. Second, when an erroneous trigram is detected and suggestion trigrams 
have to be found, the lexicon-based spell checker generates suggestions for each word in the 
trigram, which can then be combined to form new trigrams. 
As the suggestions generated by the lexicon-based spell checker lead to the suggestion trigrams 
presented by the context-sensitive spell checker, the performance of the lexicon-based spell 
checker should be optimised for giving suggestions for real-word errors. This optimisation is 
obtained by repeated testing. How this is done and what the results are is described below. 
 
Testing material 
In order to test the performance of the BESL spell checker for giving suggestions for real-word 
errors, a list of real-word errors and their corrections is required. I compiled a list of 134 real-

                                                   
9 On the sample (n) of 454 words, the Microsoft spell checker corrects 226 words and the BESL spell 
checker corrects 214 words. 
The null hypothesis is �both proportions come from the same population�, which means �both spell 
checkers perform equally well�. 
Proportion A: Pa=226/454 = 0.498 
Proportion B: Pb=214/454 = 0.471 
Expected proportion: P=(226+214)/(454+454) = 0.485 
The z-score can be computed: 
Z=(Pa-Pb)/sqrt(P.(1-P).(1/454+1/454)) = (0.47 � 0.50) / sqrt(0.250 . 4.405.10-3) = �0.904 
Supposing either a level of significance α = 0.05 or α = 0.10, z is not in the rejection area of the normal 
distribution. Therefore, the null hypothesis is not rejected; the spell checkers perform equally well. 
 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 51

word errors from three sources: Vivian Cook�s list of L2 English spelling mistakes, Mitton�s 
(1987) sets of common wrong-word errors and the list Words Commonly Confused, used by 
Golding and Schabes (1996).  
Vivian Cook compiled a list of 1400 learner English spelling mistakes from written work by L2 
learners of English, taken from the Longman Corpus of Student English and his own collections. 
Since I am only interested in the real-word errors, I reduced the list of 1400 spelling errors into a 
list of 89 real-word errors by removing all sets of words of which one was marked as erroneous 
by the lexicon-based BESL spell checker in Microsoft Word. I also removed duplicates (some 
errors had been made by more than one student). In Cook�s data, two words in a confusion set are 
not exchangeable: in all cases, the left-hand word was the misspelling of the right-hand word. 
Mitton (1987), whose research was described in section 2.1.1, collected (among other data) nine 
common wrong-word errors. In Mitton�s data, two words in a confusion set are exchangeable: the 
test data contained occurrences of a left-hand word being misspelled as the corresponding right-
hand word and occurrences of the right-hand word being misspelled as the left-hand word. 
Golding and Schabes (1996), whose research was also described in section 2.1.1, used the 71 
confusion sets from the list Words Commonly Confused in the back of the Random House 
Unabridged Dictionary (Flexner, 1983). Like the words from Mitton�s confusion sets, words from 
the Words Commonly Confused sets are exchangeable.  
Combining the three confusion sets led to the introduction of some duplicates in the new set. I 
removed these manually. 
The errors on the list have been classified into the classes described in chapter 2. The list contains 
instances of four of the six error classes that were defined in section 2.2, table 2-2. It contains 
typing errors, errors due to a cognitive or phonetic lapse, real-word syntactic errors and real-word 
semantic errors. There are no grammatical errors in the list and obviously no non-word errors. 
The four classes included in the real-word error list are listed below, with an example from the 
real-word error list for each class.  
 

- Syntactic error due to a typo, e.g. four ! hour 
- Syntactic error due to a cognitive or phonetic lapse e.g. here ! hear 
- Semantic error due to a typo, e.g. play ! pay 
- Semantic error due to a cognitive or phonetic lapse, e.g. piece ! peace 

 
The complete classified list can be found in appendix III.  
 
Testing method 
The list of 134 real-word errors is used for optimising the performance of the BESL spell checker 
for giving suggestions for real-word errors. As described in section 4.2.3, the program Context 
can be used for testing the quality of the suggestions generated by a spell checker. The number of 
suggestions generated by Context can be changed manually. This feature is used during the 
process of optimising performance: the number of suggestions is varied in order to increase the 
number of correct suggestions. However, varying the penalty configurations in phonrulesEN.txt is 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 52

even more important for optimising the suggestion performance.10 As described in section 4.2.3, 
it is possible to vary the penalty of different character transformations. For example, it is possible 
to give a higher penalty for substitution (alloy ! alliy) than for deletion (alloy ! aloy) of a 
character. Thus, changing the penalty configurations of a lexicon-based spell checker can change 
its performance for different kinds of errors.  
By repeatedly changing the configurations of the phonrules file and Context, the suggestion 
performance of the BESL spell checker has been optimised. The performance is measured by 
giving the right-hand words from the 134 real-word error sets as input in Context and checking 
whether the left-hand words are among the suggestions. 
 
Results 
For the optimal configuration of the BESL spell checker, I computed which fraction of the words 
got a correct suggestion for each class of real-word errors. The results are shown in table 5-2. 
 
Table 5-2 Fraction of correct suggestions for real-word errors from all four classes 
Cause                            Real-word syntactic errors Real-word semantic errors Total
Typo 0.83 0.89 0.86 
Cognitive or phonetic lapse 0.66 0.63 0.65 
 
The total correction recall for real-word errors is 0.72. 
The results show that the BESL spell checker more often gives the good suggestion for typing 
errors than for cognitive or phonetic lapses. The reason for this is that in general typing errors 
orthographically resemble the original word more closely than errors due to phonetic lapses (see 
chapter 2, section 2.1.2). The question now arises where the large difference between the 0.72 
correction recall for real-word errors and the 0.47 total correction recall from the first 
performance test comes from. The answer lies in the difference between Microsoft Word and 
Context as �entrance� to the spell checker. Microsoft Office spell checkers generate at most six 
suggestions for a word, whereas the number of suggestions generated by Context can be changed 
manually and was set on thirty in order to increase the correction recall.11 
 
 

                                                   
10 Part of phonrulesEN.txt is given in appendix I. The denotations of the rules in this file are explained in 
section 4.2.3. 
11 In an earlier version of the BESL spell checker, the maximum number of suggestions of Context was set 
on eight, resulting in a correction recall for real-word errors of 0.41. However, the two figures cannot be 
compared directly, since the penalty configurations were also different between the two versions. 
Unfortunately, increasing the number of suggestions given by Context to thirty decreases the system�s 
speed enormously, since every word in the detected trigram gets at most thirty suggestions. The three 
words are combined, resulting in a lot of trigrams. All those trigrams are searched in the trigram database, 
which takes much time.  



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 53

5.3. The performance of the context-sensitive spell checker 

In this section, the performance of the context-sensitive spell checker is described. In subsections 
5.3.1 and 5.3.2, the test material and the test method for testing the performance of the context-
sensitive spell checker are described respectively. In subsection 5.3.3, the results of the 
performance test are described and discussed, followed by a computation of the (expected) 
improvement of the BESL spell checker for non-word errors when it would be combined with the 
context-sensitive spell checker (subsection 5.3.4). 
 
5.3.1. Test material 

In order to test the performance of the spell checker properly, I created two test corpora. First, a 
part of the malapropisms corpus of Hirst and Budanitsky (2001) was used. Hirst and Budanitsky 
created a corpus containing malapropisms artificially. They took 500 articles and replaced one 
word in every 200 words by a spelling variation (a valid word that is one or a few basic 
transformations away from the original word). To be a candidate for replacement, a word: 

- had to be present in the spell checker lexicon,  
- needed to have at least one spelling variation that was also in the lexicon, and  
- should not be a function word or a proper noun.  

 
Using the Hirst and Budanitsky malapropisms corpus as test corpus for the current research has 
three disadvantages. First, the corpus does not contain syntactic errors. Second, it does not 
contain errors in function words. Third, the corpus does not contain errors that are more than a 
few basic character transformations away from the original word, like some errors resulting from 
phonetic lapses (e.g. cite ! sight). Since Hirst and Budanitsky used a context-sensitive spell 
checking method based on semantic information, excluding function words and syntactic errors in 
their test corpus is not a problem for their own research. However, since I aim at creating a 
method for detecting and correcting all classes of real-word errors in all classes of words, the 
Hirst and Budanitsky corpus does not suffice.  
Thus, I created another test corpus from part of the BNC combined with the 134 real-word errors 
sets, which were described in section 5.2.2 (see also appendix III). In the BNC texts, all occurring 
right-hand words from this list have been replaced by their corresponding left-hand word.12 Since 
the list of 134 real-word errors contains instances of all classes of real-word errors (except 
grammatical errors) in all classes of words, the BNC test corpus does too. However, a large 
disadvantage of the BNC test corpus is that the trigram database has been compiled from the 
BNC too. Therefore, all correct trigrams in the test corpus are present in the trigram database. 
Since the spell checking algorithm can find all correct trigrams in the database, there will not be 
any false hits. In the Hirst and Budanistky test corpus there can be false hits, since a trigram in 
this corpus is not necessarily present in the BNC, even though it is correct. Thus, the Hirst and 
Budanitsky test corpus is more representative for �real� data than the BNC test corpus.  

                                                   
12 The Perl program that was used to replace words in the corpus can be found in appendix IV-6. 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 54

From eight randomly chosen texts from both test corpora, a test corpus of about 12,500 words 
was compiled. In table 5-3, the composition of the test corpus is shown. 
 
Table 5-3 Composition of the test corpus for context-sensitive spell checking 
Source corpus Nr of texts Total nr of words 
BNC 8 5476 words 
Hirst & Budanitsky 8 7142 words 
 
The Hirst and Budanitsky test corpus contains 93 erroneous trigrams, which corresponds with 31 
errors since every error in the text is included in three trigrams. The BNC test corpus contains 
1818 erroneous trigrams, which corresponds with 606 errors.  
 
5.3.2. Testing method 

In order to measure the performance of the context-sensitive spell checker, I aim at computing 
detection recall, correction recall and precision. In section 5.1.1, I gave my definitions for these 
measures. In the current section, these definitions are adopted, but trigrams are considered instead 
of words. Thus, detection recall is the number of correctly found erroneous trigrams divided by 
the total number of erroneous trigrams in the text, correction recall is the number of correct 
suggestions divided by the total number of erroneous trigrams in the text and precision is the 
number of correctly detected erroneous trigrams divided by the total number of detected trigrams. 
For computing detection recall, the total number of errors in the text and the number of correctly 
detected strings are required. For correction recall, the total number of errors in the text and the 
total number of errors that have been corrected are required. For computing precision, the number 
of detected strings and the number of correctly detected strings are required. For these counts, 
two files are required. First, a list of erroneous and corresponding correct trigrams from the test 
texts is needed. This list is compiled by comparing the original texts and the texts containing 
errors.13 Second, the output (result) files from the context-sensitive spell checker are required. An 
example of the format of such an output file is given in appendix V. Each report of a detected 
trigram is followed by one or more suggestions. The number of suggestions for a detected trigram 
is not limited: all combinations of three word suggestions are presented. Because of that, some 
trigrams get many suggestions, in particular those trigrams that consist of short words. The 
trigram that has the highest number of suggestions is her ad it (intended trigram: her and it), 
which got 152 suggestions. The high number of candidate corrections for all three words caused 
this high number of suggestions. Fortunately, such a high amount of suggestions is exceptional: 
the average number of suggestions per detected trigram is approximately eight14.  
The output of the context-sensitive spell checker was evaluated using the list of erroneous and 
corresponding correct trigrams. The Perl program for executing this evaluation is given in 
appendix IV-7. The result of this Perl program is an output file containing the false hits from the 

                                                   
13 The Perl program for compiling this trigram list is given in appendix IV-5. 
14 Appendix IV-6 contains the Perl program that performs this count. 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 55

text, all required counts (the number of erroneous trigrams, the number of detected trigrams, the 
number of correct suggestions, the number of correctly detected trigrams and the number of false 
hits), detection recall, correction recall and precision. When all output files were evaluated, the 
averages for the two test corpora are computed. The results of the evaluation are described in the 
next subsection. 
 
5.3.3. Results 

Tables 5-4, 5-5 and 5-6 give the scores for detection recall, correction recall and precision 
respectively, per test corpus. BNC is the BNC test corpus; BUD is the Hirst and Budanitsky test 
corpus. Text minimum is the lowest score for a text of the test corpus; text maximum is the 
highest score. The average is calculated over all eight texts of one test corpus. In figures 5-1, 5-2 
and 5-3 on page 56, the same results are shown graphically. 
 
Table 5-4 Detection recall per test corpus 
Test corpus Average Text minimum Text maximum 
BNC 0.72 0.61 0.85 
BUD 0.51 0.42 0.67 
 
Table 5-5 Correction recall per test corpus 
Test corpus Average Text minimum Text maximum 
BNC 0.68 0.58 0.85 
BUD 0.33 0.11 0.67 
 
Table 5-6 Precision per test corpus 
Test corpus Average Text minimum Text maximum 
BNC 0.98 0.95 1.00 
BUD 0.05 0.03 0.07 
 
The results for the Hirst and Budanitsky corpus are the most important for a discussion of the 
performance of the context-sensitive spell checker, since these texts and the errors in these texts 
are completely independent of the trigram database. As the trigram database is extracted from the 
BNC, all correct trigrams from the BNC test texts are in the database and no false hits are 
expected.15  

                                                   
15 The absence of false hits implicates a precision of 1.00. As figure 5-3 shows, this is not the case for BNC 
texts. This means that some correct trigrams were not present in the trigram database. How is this possible? 
After studying the output files from the spell checker, I concluded that there was nothing wrong with either 
the spell checking algorithm or the algorithm for evaluating the output files. The most suitable explanation 
seems the incompleteness of the trigram database. Somehow, a number of trigrams must have disappeared 
from the database. 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 56

The first point of discussion is the large range in recall values for the Hirst and Budanitsky texts 
(see figure 5-2 and to a lesser extent figure 5-1). This large range is caused by the relatively small 
number of errors in the Hirst and Budanitsky test corpus. The number of erroneous trigrams per 
text varies from six to 21. Because of these small numbers, coincidence has a large influence and 
causes a large range between texts. 
 

 
A second point of discussion is the striking difference between the error detection rate (figure 5-
1) and the error correction rate (figure 5-2) for the Hirst and Budanitsky texts (0.51 and 0.33 
respectively). This difference is much bigger than the difference between the detection and 
correction rate for BNC texts (0.72 and 0.68 respectively). This can probably be explained by the 

Detection recall

0

0.2

0.4

0.6

0.8

1

BNC BUD

text type

de
te

ct
io

n 
re

ca
ll

average
minimum
maximum

Correction recall

0

0.2

0.4

0.6

0.8

1

BNC BUD

text type
co

rr
ec

tio
n 

re
ca

ll

average
minimum
maximum

Figure 5-1 Detection recall Figure 5-2 Correction recall 

Figure 5-3 Precision 

Precision

0

0.2

0.4

0.6

0.8

1

BNC BUD

text type

pr
ec

is
io

n average
minimum
maximum

test corpus test corpus 

test corpus 



Context-sensitive spell checking  5. The performance of the spell checking application  
 
  

 57

fact that all correct trigrams in the BNC texts are present in the trigram database. Therefore, once 
an erroneous trigram has been detected, the correct trigram is likely to be suggested. On the other 
hand, the correction rate for the Hirst and Budanitsky texts is very low when compared to the 
detection rate, because the correct trigram is not necessarily present in the trigram database.  
The question now arises why not all of the detected trigrams in the BNC texts get the correct 
suggestion. This can be explained by the fact that the BESL spell checker does not always 
generate a correct suggestion for the words in a trigram. As a result, the correct combination 
cannot be made.  
Another point of discussion is the large number of false hits and the corresponding low precision 
for the Hirst and Budanitsky texts. This has the same reason as the large difference between 
detection recall and correction recall: trigrams not containing errors are not necessarily present in 
the trigram database and therefore likely to be falsely detected. Figure 5-3 shows that the 
precision for the Hirst and Budanitsky texts is very low. In fact, only 5% of all detected trigrams 
are rightly detected. The remaining 95% are false hits. 
 
5.3.4. Improvement with respect to the BESL spell checker 

Now that the fraction of real-word errors that is detected and corrected by the context-sensitive 
spell checker is known, we can compute the (expected) improvement in the performance of  the 
lexicon-based BESL spell checker when it would be combined with the context sensitive spell 
checker. For this computation, I use the results for the Hirst and Budanitsky texts, since these are 
the most representative for real data. As table 5-1 shows, the BESL spell checker detects 59% of 
all errors. According to table 5-4, the context-sensitive spell checker detects 51% of real-word 
errors. Supposing a real-word error rate of 25% of all errors (see section 2.1.2), this implicates 
that the context-sensitive spell checker detects 12.8% (51% of 25%) of all errors. Adding 59 and 
12.8 yields a total detection rate of 72% for the spell checking application. This is an 
improvement of 22% (i.e. 12.8/59 * 100%) with respect to the original lexicon-based spell 
checker.  
For correction, a similar computation can be done. As table 5-1 shows, the BESL spell checker 
corrects 47% of all errors. According to table 5-5, the context-sensitive spell checker corrects 
33% of real-word errors. Again, supposing a real-word error rate of 25% of all errors, this 
implicates that the context-sensitive spell checker corrects 8.3% (33% of 25%) of all errors. 
Adding 47 and 8.3 yields a total correction rate of 55% for the spell checking application. This is 
an improvement of 17% (i.e. 8.3/47 * 100%) with respect to the original lexicon-based spell 
checker. 



Context-sensitive spell checking  6. Conclusion  
 
  

 58

6. Conclusion 

The concluding chapter is divided into four parts. First, the main research questions as stated in 
the Introduction are answered (section 6.1). Then the current research is evaluated (section 6.2). 
In section 6.3, a comparison is made to the results of other studies on context-sensitive spell 
checking. Finally, some suggestions for further research are proposed in section 6.4. 
 
 
6.1. Answering the main questions 

In the Introduction, the following main research questions were formulated: 
 

1. What proportion of real-word errors can be detected and corrected using context-sensitive 
spell checking based on word trigram probability information? 

 
2. To what extent do the results of a lexicon-based spell checker improve when the context-

sensitive spell checker is combined with the lexicon-based spell checker? 
 
In this section I will try to answer these questions and to evaluate the results in the light of a 
possible application in a state of the art spell checker.  
First, as described in section 5.3.3, 51% of all real-word errors were detected using context-
sensitive spell checking based on word trigram probability information. 33% of all real-word 
errors have been corrected. Especially the detection rate seems high enough for a real application. 
As a comparison, a lexicon-based spell checker like the Microsoft spell checker or the BESL spell 
checker has a detection rate of 59%. Unfortunately, the correction rate is low: only one out of 
three erroneous trigrams gets the correct suggestion, whereas one out of two is detected. 
Second, the expected improvement of the spell checking application with respect to the lexicon-
based spell checker has been computed in the previous section. The detection rate rises from 59% 
to 72%. The correction rate rises from 47% to 55%. This means that the performance of the 
lexicon-based spell checker improves with 22% for detection and 17% for correction when the 
context-sensitive spell checker is combined with the lexicon-based spell checker. 
Detection and correction recall suggest that this context-sensitive spell checking algorithm 
(possibly with some small adaptations) performs well enough for a real application. 
Unfortunately, precision is much too low: only 5% of all detected trigrams are rightly detected. 
An application that has this performance is not reliable enough for a user to work with. 
Some suggestions for changes that are expected to improve the system�s performance are given in 
section 6.4.  
 
 



Context-sensitive spell checking  6. Conclusion  
 
  

 59

6.2. Evaluation of the current research 

In retrospect, some parts of the current research should have been done differently. In this section, 
three criticisms on the current research are described. 
The first point of criticism concerns the validity of the test corpus for testing the performance of 
the context sensitive spell checker. First of all, the overall performance results could only be 
based on the Hirst and Budanitsky corpus, since the BNC corpus was already used as the training 
corpus. However, the Hirst and Budanitsky corpus is not very suitable for testing purposes for 
various reasons. First, the error density of the Hirst and Budanitsky corpus is very low: only one 
in every 200 words contains an error. Therefore, the corpus is not very representative and the 
range between the performances for the eight texts was very large. In order to handle the low 
error density in the Hirst and Budanitsky corpus, I probably should have used a larger subset of 
their corpus. Second, the research aimed at testing all classes of real-word errors. To achieve this, 
all classes of errors had been put in the BNC test corpus. However, the Hirst and Budanitsky 
corpus contains only semantic errors (malapropisms). Therefore, only the performance for 
semantic errors is measured. I do not expect the results for syntactic errors to be very different 
from those for semantic errors, but it would have been better to test on all classes of real-word 
errors. 
The second point of criticism concerns the trigram extraction algorithm. As described in section 
4.4.2, sentence borders are removed when extracting trigrams from the BNC. The number of 
trigrams that cross a sentence border is not negligible: one in every ten trigrams crosses a 
sentence border. Unless the fact that in the text that is spell checked sentence borders are removed 
too, it would have been better not to ignore sentence borders, because it results in one 
meaningless trigram in every ten trigrams. 
The third point of criticism is that there is a small deficiency in the context-sensitive spell 
checking algorithm. In order to increase precision, a trigram is only detected when it has one or 
more suggestions. Therefore, the rule that prints the detected trigram is in the same loop as the 
rule that prints the possible suggestion. Unfortunately, this means that in the output file the 
detected trigram is printed for every suggestion. This had to be transformed in a format in which 
the detected trigram is printed once and all suggestions are printed under it (see appendix V), in 
order to make the file valid as input for the evaluation program. 
A fourth point of criticism concerns the general architecture of the spell checker. For the current 
research, I decided to build a �stand alone� context sensitive spell checker, i.e. a spell checker that 
would only correct real-word errors and not non-word errors. However, a check for non-word 
errors has to be performed all the same in order to ignore those trigrams that include a non-word 
error (see section 4.3, figure 4-4). In retrospect, it seems nonsensical not to correct the non-word 
error at the same time. In other words, it makes sense to combine the detection and correction of 
non-word errors and real-word errors in one system from the start. This way, no detection steps 
have to be made twice. As a result, the whole process would be much faster. 
 
 



Context-sensitive spell checking  6. Conclusion  
 
  

 60

6.3. Comparing the results of the current research to those of other studies 

It would be interesting to compare results of the current research to the results of Golding and 
Schabes (1996), St-Onge (1995) or Hirst and Budanitsky (2001), because they try to solve the 
problem of real-word errors using other methods than I did. Unfortunately, none of these methods 
consider all classes of real-word errors in all classes of words (see chapter 3, sections 3.6 and 
3.7). Therefore, my results cannot be compared one on one to the results reported for these 
studies. In spite of that, I will shortly discuss their results and try to make a comparison to my 
results in so far as possible. 
 
6.3.1. Golding and Schabes (1996) 

Golding and Schabes (1996) consider a finite number of confusion sets (18). They compute the 
performance of their system for each confusion set separately. In their test corpus, they replaced 
instances of words from the confusion sets by another word from the same set. Then they 
computed for each confusion set how often the system suggests replacing the erroneous word by 
the original word. For example, they replaced several instances of their by there. In 87.6% of the 
occurrences, the system suggests replacing the incorrect there by their. Unfortunately, I cannot 
compare the results of the current research to the results obtained by Golding and Schabes 
because I did not consider separate confusion sets in computing my results. 
 
6.3.2. Hirst and Budanitsky (2001) 

Hirst and Budanitsky (2001) measure the performance of their system for detecting and 
correcting malapropisms using detection recall, correction recall and precision. They found a 
detection recall varying from 23.1% to 50%, a precision varying from 18.4% to 24.7% and a 
correction recall varying from 2.6% to 8%. 
Since I used a test corpus that contains the same class of real-word errors as the test corpus used 
by Hirst and Budanitsky, it is possible to compare my results to theirs. In table 6-1, the results are 
compared. 
 
Table 6-1 Comparison of the results of the current research to those of Hirst and Budanitsky 
 Hirst and Bud. (min.16) Hirst and Bud. (max.16) Current research 
Detection recall 23.1%  50% 51% 
Correction recall 2.6% 8% 33% 
Precision 18.4% 24.7% 5% 
 
Table 6-1 shows that Hirst and Budanitsky�s method, which is based on semantic information, 
yields a higher precision than my method, which is based on probabilistic information. This 
                                                   
16 In evaluating their system, Hirst and Budanitsky (2001) used different search scopes in determinations of 
semantic relatedness: just the paragraph containing the target word (scope = minimum); that paragraph plus 
one or two adjacent paragraphs on each side; and the complete article (scope = maximum). 



Context-sensitive spell checking  6. Conclusion  
 
  

 61

means that their system detects fewer strings incorrectly. On the other hand, Hirst and 
Budanitsky�s method performs much worse when considering correction recall. Apparently, it is 
very hard for a system based on semantic information to find the appropriate correction for a 
detected error.  
From their results, Hirst and Budanitsky conclude that their system approaches practical usability. 
They state: 
 

It is not realistic to expect absolute correctness, 100% precision and recall, nor is this 
level of performance necessary for the system to be useful. In conventional interactive 
spelling correction, it is generally assumed that very high recall is imperative but 
precision of 25% or even less is acceptable � that is, the user may reject more than 3 out 
of 4 of the system�s suggestions (words detected by the system) without deprecating the 
system as �dumb� or not worth using 
(Hirst and Budanitsky, 2001, p. 24). 

 
However, I concluded that the performance of the system that was described in the current 
research is much too poor for a real application (section 6.1). I argued that this is mainly because 
of the low precision. The precision of Hirst and Budanitsky�s system is higher, but in my opinion 
still too low for a real application. After all, with a precision of approximately 20%, the user will 
reject four out of five of the system�s flaggings. Moreover, with a correction recall of 
approximately 5%, the system suggests the correct suggestion for only one out of twenty words. 
An application that has this performance is not reliable enough for a user. 
 
6.3.3. St-Onge (1995) 

St-Onge (1995) also computed detection recall, correction recall and precision for his method for 
detecting and correcting malapropisms. He found a detection recall of 28.5%, a correction recall 
of 24.8% and a precision of 12.5%. These results are compared to the results of the current 
research and those of Hirst and Budanitsky in table 6-2. 
 
Table 6-2 Comparison of the results of St-Onge and Hirst and Budanitsky to the current research 
 St-Onge Hirst and Bud.17 Current research 
Detection recall 28.5% 35% 51% 
Correction recall 24.8% 5% 33% 
Precision 12.5% 20% 5% 
 
Table 6-2 shows that the system of St-Onge is more reliable than Hirst and Budanitsky�s method 
for suggesting corrections. Unfortunately, like in the current research, precision is much too low. 

                                                   
17 The results of Hirst and Budanitsky are indications, based on the minimum and maximum values shown 
in table 6-1. 



Context-sensitive spell checking  6. Conclusion  
 
  

 62

St-Onge states that his method could be used in a real application when combined with other 
methods: 
 

Full malapropism detection with no false-alarms at all cannot be expected with the 
approach proposed here. However, I believe that better performances and the integration 
of this malapropism detection algorithm to a spelling checker could make a 
commercializable product. 

 (St-Onge, 1995, p. 49) 
 
I consider the view of St-Onge to be far more realistic than that of Hirst and Budanitsky. 
After all, I think that methods based on probabilistic information are more promising than 
methods based on semantic information, because I prefer a method that aims at detecting and 
correcting all classes of real-word errors in all classes of words. Moreover, the current research 
shows that in a probabilistic method recall can be reasonably high. The methods of St-Onge and 
Hirst and Budanitsky can detect and correct all classes of real-word errors but by using semantic 
information, they ignore errors in function words. However, I have to make one note at this 
conclusion: the algorithm of the current research performs spell checking much too slow for a 
real application. Therefore, I conclude that probabilistic methods are preferable above semantic 
methods, under the condition that the algorithm can be executed in real-time. 
 
6.3.4. Mays, Damerau and Mercer (1991) 

As the current research has most in common with the study of Mays, Damerau and Mercer 
(1991), it would also be interesting to compare my results to their results. But unfortunately, they 
did not use real test data to measure the performance of their spell checking application. 
Therefore, I cannot really compare my detection recall (51%) to theirs (76%) and my correction 
recall (33%) to theirs (74%).  
The study of Mays, Damerau and Mercer (1991) is the only other research in the literature that 
uses word trigram probability information as a possible solution to the problem of real-word 
errors. However, they built an application of which the performance could not be measured on 
real data, since their algorithm uses predefined sentence cohorts (see chapter 3, section 3.6.1). 
Thus, the method used by Mays, Damerau and Mercer is not valid for checking a real text. The 
method in the current research is therefore the first context-sensitive spell checking method that 
can be used for all types of real-word errors in all word classes and that is valid for checking real 
text. However, as concluded in section 6.1, the performance of the current method is not good 
enough for a real application. The changes that should be made in order to make the system 
perform well enough, are described in section 6.4. 
 
 



Context-sensitive spell checking  6. Conclusion  
 
  

 63

6.4. Further research 

As described in section 6.1, there are two main reasons why the current spell checker is not 
appropriate for a real application. First, the spell checking program runs much too slow. This 
problem cannot be solved easily. One could wait for computers to be faster or one could change 
the algorithm. Whether changing the algorithm can solve the speed problem enough needs further 
research. 
Second, precision is much too low: only 5% of all detected trigrams are rightly detected. An 
application that has this performance is not reliable for a user. I do not expect the precision to get 
much higher when a larger corpus for extracting trigram probabilities is used: there will always 
be many correct trigrams in a text that are not in the trigram database.  
I expect the improvement of the system has to be found in changing the algorithm. There are 
several ways for possibly improving the spell checking method. A variant of the original 
algorithm could be useful for a real application. Three different variants could be studied. 
First, a variant of the algorithm, in which a trigram is only detected if it has a very high-
probability suggestion, could be feasible. For example, when a trigram is not in the trigram 
database but one of its suggestion trigrams occurs in the BNC over a hundred times, then the 
original trigram is very likely to be an misspelling of this high-frequent trigram. A trigram should 
only be detected when it has such a high-frequent variant. Detection rate will be lower but more 
of the detected trigrams will be correctly detected. A good balance between precision and recall 
should be found in order to create a useful application. The possibilities for such an algorithm 
should be studied. 
Another possibility for improving performance could perhaps be using word probability 
information. Maybe a trigram that only contains very low-frequent words is less likely to be the 
correct suggestion than a trigram of high-frequent words. This should be found out. Possibly, 
word probability information could also be used for detecting trigrams that are low frequent but 
occur in the BNC. When a trigram contains three high-frequent words but the trigram itself has a 
low number of occurrences in the database, it may be more likely to contain an error than when 
the words in the trigram are low frequent words themselves. Whether this is indeed true should be 
found out. 
Research could also be done into the use of text type information. For a specific text type with a 
specific subject, a trigram database could be built from a corpus containing this kind of texts. 
Then less incorrect suggestions are possibly given. For example, when building a context-
sensitive spell checking application for children, vocabulary would be smaller and therefore the 
trigram database would be smaller. Only trigrams that are likely to be used by children could then 
be suggested. 
There should be more research into all these variants in order to find out what kind of application 
could be derived from the current research. 
 
 
 
 



Context-sensitive spell checking  References  
 
  

 64

References 

 
Allison, L. (1999), Trie, Department of Computer Science and Software Engineering, Monash 
 
Burnard, L. (2000), Reference Guide for the British National Corpus (World Edition) 
 
Carter, D. M. (1992), Lattice-based word identification in CLARE, in �Proceedings of the 30th 
Annual Meeting of the Association for Computation Linguistics�, Newark, Del., June 28 � July 2, 
ACL: 159-166 
 
Cook, V.J. (1997), L2 users and English spelling, in �Journal of Multilingual and Multicultural 
Development�, 18, 6: 474-488 
 
Damerau, F. J. (1964), A technique for computer detection and correction of spelling errors, in 
�Communications of the ACM�, 7(3): 171-176  
 
Damerau, F. J. and Mays, E. (1989), An Examination of Undetected Typing Errors, in 
�Information Processing & Management�, 25(6): 659-664  
 
Flexner, S. B. (Ed.) (1983), Random House Unabridged Dictionary, 2nd edition. Random House, 
New York 
 
Golding, A. R. and Schabes, Y. (1996), Combining trigrambased and feature-based methods for 
contextsensitive spelling correction, in �Proceedings of the 34th Annual Meeting of the 
Association for Computational Linguistics�, Santa Cruz, CA 
 
Grudin, J. (1983), Error patterns in skilled and novice transcription typing, in �Cognitive Aspects 
of Skilled Typewriting�, W. E. Copper, Ed. Springer-Verlag, New York 
 
Hirst, G. J. and Budanitski, A. (2001), Correcting Real-Word Spelling Errors by Restoring 
Lexical Cohesion, Department of Computer Science, Toronto, Ontario, Canada 
 
Kernighan, M. D.  (1991), Specialized spelling correction for a TDD system, AT&T Bell Labs 
Tech. Mem., August 30.  
 
Kukich, K. (1990), A comparison of some novel and traditional lexical distance metrics for 
spelling correction, in �Proceedings of INNC-90-Paris�, 309-313 
 
Kukich, K. (1992a), Spelling correction for the telecommunications network for the deaf, in 
�Communications of the ACM�, 35(5): 80-90 
 



Context-sensitive spell checking  References  
 
  

 65

Kukich, K. (1992b), Techniques for automatically correcting words in text, in �ACM Computing 
Surveys�, 24: 377-439 
 
Landauer, T. K. and Streeter, L. A. (1973), Structural differences between common and rare 
words, in �Journal of Verbal Learning and Verbal Behaviour�, 12: 119-131 
 
Leech, G. (1991), The state of the art in corpus linguistics, in Aijmer, K. and Altenberg, B. (eds.), 
�Introduction to English Corpus Linguistics�, Longman, London, 1991: 8-29 
 
Levenshtein, V. I. (1966), Binary codes capable of correcting deletions, insertions and reversals, 
in �Sov. Phys. Dokl�. 10 (Feb): 707-710 
 
Lowrance, R. and Wagner, R. (1975), An extension of the string-to-string correction problem, in 
�J. ACM�, 22, 2 (Apr.): 177-183 
 
Mays, E., Damerau, F. J. and Mercer, R. L. (1991), Context based spelling correction, in 
�Proceedings of the IBM Natural Language ITL�, 517-522, Paris, France 
 
Mitton, R. (1987), Spelling Checkers, Spelling Correctors, and the Misspellings of Poor Spellers, 
in �Information Processing & Management�, 23(5): 495-505 
 
Mitton, R. (1996), English Spelling and the Computer Longman, London 
 
Muth, F. E. Jr. and Tharp, A. L. (1977), Correcting human error in alphanumeric terminal input, 
in �Information Processing and Management�, 13: 329-337 
 
Park, S. H. and Gero, J. S. (1999), Qualitative representation and reasoning about shapes, in 
Gero, J. S. and Tversky, B.(eds.), �Visual and Spatial Reasoning in Design, Key Centre of Design 
Computing and Cognition�, University of Sydney, Sydney, Australia: 55-68 
 
Peterson, J. L. (1986), A note on undetected typing errors, in �Communications of the ACM�, 
29(7): 633-637  
 
Pollock, J. J. and Zamora, A. (1983), Collection and characterization of spelling errors in 
scientific and scholarly text, in �Journal of American Society of Informatics and Science�, 34(1): 
51-58 
 
Pollock, J. J. and Zamora, A. (1984), Automatic spelling correction in scientific and scholarly 
text, in �Communications of the ACM�, 27(4): 358-368 
 



Context-sensitive spell checking  References  
 
  

 66

St-Onge, D. (1995), Detecting and correcting malapropisms with lexical chains, Master's thesis, 
Department of Computer Science, University of Toronto. Also published as Technical Report 
CSRI-319  
 
The TEMAA website: http://cst.dk/projects/temaa/D16/Heading15 
 
Tillenius, M. (1996), Efficient generation and ranking of spelling error corrections, Technical 
Report TRITA-NA-E9621, Department of Numerical Analysis and Computing Science, Royal 
Institute of Technology, Stockholm 
 
Veronis, J. (1988), Computerized correction of phonographic errors, in �Comput. Hum.�, 22: 43-
56. 
 
Wagner, R. A. and Fischer, M. J. (1974), The string-to-string correction problem, in �J ACM� 21, 
1 (Jan.): 168-178 
 
Wing, M. and Baddeley, A. D. (1980), Spelling errors in handwriting: A corpus and 
distributional analysis, in �Cognitive Processes in Spelling�, U. Frith. Ed. Academic Press, 
London 
 
Wu, Z. B., Hsu, L. S., Chew, L. T. (1992), A Survey on Statistical Approaches to Natural 
Language Processing, National University of Singapore 
 
Yannakoudakis, E. J. and Fawthrop, D. (1983), The rules of spelling errors, in �Information 
processing and management�, 19(12): 101-108  
 
Young, C. W., Eastman, C. M. and Oakman, R. L. (1991), An analyses of ill-formed input in 
natural language queries to document retrieval systems, in �Information Processing and 
Management�, 27(6): 615-622 
 
 



Context-sensitive spell checking  Appendices  
 
  

 A1

Appendices 

 



Context-sensitive spell checking  Appendices  
 
  

 A2

Appendix I � a sample of phonrulesEN.txt 

 
(1) %#!MatchPenalties 

(2) ins=0001 

(3) del=0001 

(4) sub=0001 

(5) alt=0001 

(6) hyph=0000 

(7) doub=0002 

(8) undoub=0002 

(9) twin=0001 

(10) kin=0001 

(11) cousin=0001 

(12) %#!PenaltyLimits 

(13) limbase=12 

(14) limincr=2 

(15) limmax=50 

(16) maxdistbase=8 

(17) maxdistincr=0 

(18) maxdistmax=8 

(19) %#!MatchRules 

(20) ;RULE CLASS REMARK 

(21) /io<=>u/ kin  ;fashion 
(22) /io<=>e/ kin  ;fashion 

(23) /oe<=>u/ kin  ;Phoenician 

(24) /oi<=>u/ cousin ;porpoise,tortoise 

(25) /oi<=>e/ cousin  ;porpoise,tortoise 

(26) /ou<=>e/ cousin  ;famous 

(27) /$Mc<=>$Mac/ twin  ;McDonalds, MacIntosh 

(28) sch<=>sk/ kin ;school, ski 

(29) /ce<=>sh/ kin ;ocean 

(30) /ci<=>sh/ kin ;special 

(31) /sc<=>sh/ kin ;fascism 

(32) /si<=>sh/ kin ;emulsion 

(33) /ti<=>sh/ kin ;station 

(34) /sci<=>sh/ kin ;conscious 

(35) /ssi<=>sh/ kin ;mission 

(36) /ght<=>t/ kin ;nought 

(37) /f<=>v/ twin ;very, fairy 

(38) /ph<=>v/ kin ;Stephen 

(39) /u<=>w/ kin ;persuade 

(40) /y<=>j/ cousin ;yard 

(41) /s<=>z/ cousin ;haze 

(42) /ible<=>able/ twin 

(43) /c=>$ç/ cousin ;garçon 

(44) /$&<=>and/ cousin 

(45) /$.=>/  twin 

(46) /$.=>dot/ kin 



Context-sensitive spell checking  Appendices  
 
  

 A3

Appendix II � User interfaces 

1. User interface of the macro test for comparing two spell checkers 

 
 
2. User interface of the macro test for comparing the BESL speller and the MS speller 

 



Context-sensitive spell checking  Appendices  
 
  

 A4

Appendix III � Classified list of 134 real-word errors 

 
1 = typo, syntactic error 
2 = cognitive / phonetic lapse, syntactic error 
4 = typo, semantic error 
5 = cognitive / phonetic lapse, semantic error 
 
a-am 1 
ad-and 1 
an-and 1 
anther-another 1 
ay-any 1 
beg-big 1 
begin-being 1 
bough-bought 1 
bout-about 1 
car-can 1 
cold-could 1 
Crete-create 1 
fee-free 1 
form-from 1 
hat-had 1 
hold-old 1 
hour-four 1 
lather-leather 1 
Lear-learn 1 
loner-longer 1 
metal-mental 1 
on-an 1 
out-our 1 
quite-quiet 1 
re-are 1 
run-rum 1 
stud-study 1 
test-best 1 
the-then 1 
the-they 1 
thing-think 1 
though-thought 1 
tried-tired 1 
wan-want 1 

weeding-wedding 1 
ales-else 2 
altar-alter 2 
an-a 2 
are-our 2 
brake-break 2 
Braun-brown 2 
buy-by 2 
by-be 2 
cent-sent 2 
cite-sight 2 
coast-cost 2 
comment-common 2 
cool-call 2 
descript-described 2 
draw-drawer 2 
dual-duel 2 
extent-extend 2 
foreword-forward 2 
good-goods 2 
hear-here 2 
its-it's 2 
know-now 2 
life-live 2 
lither-leather 2 
ma-my 2 
may-my 2 
miner-minor 2 
moral-morale 2 
of-off 2 
off course-of course 2 
past-passed 2 
pedal-peddle 2 
plain-plane 2 



Context-sensitive spell checking  Appendices  
 
  

 A5

pleas-please 2 
principal-principle 2 
red-read 2 
role-roll 2 
see-sea 2 
shear-sheer 2 
staid-stayed 2 
than-then 2 
their-there 2 
to-too 2 
tree-three 2 
trough-through 2 
weather-whether 2 
were-where 2 
who's-whose 2 
Wright-right 2 
your-you're 2 
bens-bends 4 
chord-cord 4 
country-county 4 
derived-deprived 4 
flounder-founder 4 
hangar-hanger 4 
heart-head 4 
heat-heart 4 
hopping-hoping 4 
knee-kneel 4 
law-lawn 4 
litter-letter 4 
mane-man 4 
ordinance-ordnance 4 
pasted-passed 4 
pay-play 4 
radial-radical 4 
Walsh-Welsh 4 
wards-words 4 
breach-breech 5 
accept-except 5 
adapt-adopt 5 
advice-advise 5 
affect-effect 5 
aid-aide 5 

aloud-allowed 5 
bloc-block 5 
born-borne 5 
bough-bow 5 
complement-compliment 5 
compose-comprise 5 
consul-council 5 
corps-corpse 5 
desert-dessert 5 
eminent-immanent 5 
feel-fill 5 
flair-flare 5 
forceful-forcible 5 
fortuitous-fortunate 5 
idle-idol 5 
lay-lie 5 
lead-led 5 
loose-lose 5 
loosing-losing 5 
massage-message 5 
naval-navel 5 
palate-palette 5 
peace-piece 5 
persecute-prosecute 5 
perspective-prospective 5 
precede-proceed 5 
raise-rise 5 
tanking-thanking 5 
toke-took 5 



Context-sensitive spell checking  Appendices  
 
  

 A6

Appendix IV � Perl programs 

 
1. The Perl program for extracting relevant information from BESL 

 
#!/usr/pkg/bin/perl 

#perl program to extract a usable lexicon containing for each id every possible 

word form from BESL. 

 

use strict; 

#use warnings; 

 

my $regel; 

 

while ($regel=<>) { 

 my @forms; 

 my $id; 

 my $hw; 

 my $pos; 

 

 if ($regel =~ /<se.*id=([0-9]*)>/) { 

  $id = $1; 

 } 

 if ($regel =~ /<hw.*>(.*)<\/hw>/) { 

  $hw = $1; 

 } 

 if ($regel =~ /<ps>(.*?)[&<,(]/) { 

  $pos = $1; 

 } 

#testing whether there is more than one occurrence of <form> 

 

 while ($regel =~ /<form>([a-zA-Z]*)<\/form>/g) { 

     push @forms, $1; 

 } 

#first occurrence of <form> contains the same content as <hw>,  

#thus only printing second occurrence of <form> 

 

 if ($hw ne $forms[0]) { 

     unshift @forms, $hw; 

 } 

 

 for my $f (@forms) { 

     print "$f\t$pos\n"; 

 } 

} 

 

 
 



Context-sensitive spell checking  Appendices  
 
  

 A7

2. The Perl program for editing the BESL word list 

#! usr/bin/perl 

 

# This program removes multi-word entries, replaces single hyphens by  

# double hyphens and gives entries without POS-tag the tag “W”. 

 

$lex = $ARGV[0]; 

open(IN,$lex) || die "cannot open lexicon $lex"; 

 

while ($rule = <IN>) { 

 

# entries with no pos-tag should get the tag W 

 

 @parts1 = split(/\t/,$rule); 

 $word = $parts1[0]; 

 $postag = $parts1[1]; 

 if ($postag eq "\n") { 

  $postag = "W\n"; 

 } 

 

# multi-word entries are removed: the entry should not contain white-spaces 

 if ($rule !~ /.+(\s.+)+\t/) { 
 

# suffix: 

  if ($rule =~ /[a-zA-Z]0(\-.+)\t/) { 

                                print "$1\tsuff.\n"; 

                } 

# prefix: 

                elsif ($rule =~ /(.+\-)\t/) { 

                                print "$1\tpref.\n"; 

                } 

# hyphened entries (unknown number of parts): 

  

  elsif ($rule =~ /(.+\-.+)\t(.+)/) { 

                        @parts = split(/\-/,$1); 

   $ne = @parts; 

   $i = 0; 

   while ($i != $ne-1) { 

    print "$parts[$i]--"; 

    $i++; 

   } 

   print "$parts[$i]\t$2\n";    

                } 

# all other rules: 

 

  else { 

   print "$word\t$postag"; 

  } 

 } 

} 

 



Context-sensitive spell checking  Appendices  
 
  

 A8

3. The Perl program for executing the context-sensitive spell checking algorithm 

 
#!/usr/local/bin/perl 

 

use strict; 

 

use DB_File; 

use IPC::Open2; 

use Data::Dumper; 

 

my %counts;  # counts of trigrams 

my %index;  # map from word to index number 

my $pid; 

my $debug_ipc_in = 0; 

my $debug_ipc_out = 0; 

 

open_databases(); 

start_conventional_speller(); 

main(); 

 

sub main 

{ 

    my $border_prob = 0; 
 

    # from trigram.pl (Olaf): from here... 

 

    my @gram = ("", "", ""); 

    my @index = (0, 0, 0); 

 

    while (my $line = <>) { 

 chomp $line; 

 $line =~ s/.*/\L$&/; # lowercase the text 

 $line =~ s/[^\w']/ /g; # change all non-word characters to space 

 my @words = split /\s+/, $line; 

 

 #print "l: $line\n"; 

 

 while (@words) {  # loop over all words of a text line 

     my $w = shift @words; 

     next if not $w;  # skip empty words 

     shift @gram;  # drop old word 

     push @gram, $w;  # add in new word 

 

     my $index = $index{$w} || 0; # map from word to index, 

     shift @index; 

     push @index, $index; 

     my $trigram = pack "w3", @index; 

 

    # ... to here 

 if ($gram[0] ne "") {  #otherwise, first word and first two words are 

incomplete trigrams 



Context-sensitive spell checking  Appendices  
 
  

 A9

     my $orig_prob = $counts{$trigram} || 0; # trigram_prob(@gram); 

     my $sugg_prob; 

 

     if ((all_in_lex(@gram)) && ($orig_prob <= $border_prob)) { 

  print "real-word error detected: $gram[0] $gram[1] $gram[2]\n"; 

 

  my @combinations = get_all_combinations(@gram); 

  foreach my $sugg_gram (@combinations) { 

      $sugg_prob = trigram_prob(@$sugg_gram); 

      # print "@$sugg_gram -> $sugg_prob\n"; 

      # The suggestion-trigram by definition occurs in the lexicon  
      # so we don't need to test that.      

      if (# (all_in_lex(@sugg_gram)) && 

   ($sugg_prob > $orig_prob)) { 

        print "suggestion: $sugg_gram->[0] $sugg_gram->[1] 

$sugg_gram->[2]\n"; 

      } 

  } 

     } 

  } 

 } 

    } 

 

    #waitpid $pid, 0; 

} 

 

sub expect 

{ 

    my $expect = shift; 

    my $resp; 

    #print "$expect\n"; 

 

    do { 

 $resp = <RDRFH>; 

 print "<-< ", $resp if $debug_ipc_in; 

    } until $resp =~ /$expect/; 

    print " - \n" if $debug_ipc_in; 

} 

 

sub all_in_lex 

{ 

    my @trigram = @_; 

    my $ok = 1; 

 

    # Feed all 3 words to the speller and check if it complains. 

     while ($ok && (my $w = shift @trigram)) { 

 # feed only second word of trigram to the speller: 

 # my $w = $trigram[1]; 

 

 print ">-> ", $w, "\n" if $debug_ipc_out; 

 print WTRFH $w, "\n"; 

 my $resp = <RDRFH>; 



Context-sensitive spell checking  Appendices  
 
  

 A10

 print "<-< ", $resp if $debug_ipc_in; 

 

 next if ($resp =~ /Prompt/); 

 # Look for Check returns 0[0:0]/1, @0:3 for 'bla' 

 # where /1 is the error code for "unknown word". 

 $ok = 0 if ($resp =~ /]\/1,/); 

 

 expect(qr/Prompt/); 

     } 

 

    return $ok; 
} 

 

sub get_all_variations 

{ 

    my @trigram = @_; 

    my @all_variations = (); 

 

    while (my $w = shift @trigram) { 

    #find variations for second word only: 

    #my $w = $trigram[1]; 

   

 print ">-> ", ",", $w, "\n" if $debug_ipc_out; 

 print WTRFH ",",$w, "\n"; 

 my $resp; 

 

 expect(qr/Suggestions:/); 

 

 # Keep all variations, including original word, without duplicates. 

 my %variations; 

 $variations{$w} = 1; 

 while (my $resp = <RDRFH>) { 

     print "<-< ", $resp if $debug_ipc_in; 

     chomp $resp; 

     my @parts = split /\t/, $resp; 

     last if @parts != 2; 

     $variations{$parts[1]} = 1; 

 } 

 

 push @all_variations, [ sort keys %variations ]; 

 

 expect(qr/Prompt/); 

    } 

    # print "All variations ", Dumper(\@all_variations), "\n"; 

 

    return @all_variations; 

 

} 

 

sub get_all_combinations 

{ 

    my @trigram = @_; 



Context-sensitive spell checking  Appendices  
 
  

 A11

    my @combinations = (); 

 

    my @variations = get_all_variations(@trigram); 

     

    foreach my $w1 (@{$variations[0]}) { 

 foreach my $w2 (@{$variations[1]}) { 

    foreach my $w3 (@{$variations[2]}) { 

  push @combinations, [ $w1, $w2, $w3 ]; 

 # push @combinations, [ $trigram[0], $w1, $trigram[2] ]; 

    } 

 } 
    } 

 

    # print "All combinations: ", Dumper(\@combinations), "\n"; 

    return @combinations; 

} 

 

sub trigram_prob 

{ 

    my @trigram = @_; 

 

    my @indices; 

 

    foreach my $w (@_) { 

 my $index = $index{$w} || 0; 

 return 0 if !$index; 

 

 push @indices, $index; 

    } 

 

    my $index = pack "w3", @indices; 

 

    return $counts{$index} || 0; 

} 

 

sub open_databases 

{ 

    my $filename = "db.trigrams"; 

    my $wordfile = "db.words"; 

    my $invwordfile = "$wordfile-inv"; 

    #$wordfile = undef; # if undef, use words as keys directly (takes more 

space) 

    my $nextindex; 

 

    my $hashinfo = new DB_File::HASHINFO; 

    $hashinfo->{'cachesize'} = 30_000_000; # Use a bigger cache than normal 

- hope it helps. The size is in bytes. 

 

    my $db = tie %counts, "DB_File", $filename, O_RDONLY, 0640, $hashinfo 

 or die "Cannot open file '$filename': $!\n"; 

 

    my $indexdb; 



Context-sensitive spell checking  Appendices  
 
  

 A12

    my $invindexdb; 

 

    if (defined $wordfile) { 

 # The words are mapped to an index number, and the index is then 

 # used in the trigram-database. This is because the number will 

 # be shorter than the word, therefore the trigram-database will 

 # be smaller. Especially since each word will occur at least 3 times 

 # as a key, for each possible position in a trigram. Many words 

 # also occur in different contexts, which is even more duplication. 

 

 # Note: for this juggling with the keys, we could have used a 
 # DBM filter: filter_fetch_key and filter_store_key. 

 

 my $hashinfo_smaller = new DB_File::HASHINFO; 

 $hashinfo_smaller->{'cachesize'} = 3_000_000; # Use a bigger cache than 

normal - hope it helps. 

 

 $indexdb = tie %index, "DB_File", $wordfile, O_RDONLY, 0640, 

$hashinfo_smaller 

     or die "Cannot open file '$wordfile': $!\n"; 

 

 # Also the next index number is stored, so the script can be run 

 # incrementally. 

 

 $nextindex = $index{'#'} || 1; 

    } 

 

} 

 

sub start_conventional_speller 

{ 

    $pid = open2(\*RDRFH, \*WTRFH, "./context", "context"); 

    if (!$pid) { 

 die "Cannot start context\n"; 

    } 

 

    expect(qr/Prompt/); 

} 

 

4. The Perl program for replacing words in a BNC text by real-word errors 

 
#! usr/bin/perl 

 

# replaces in a BNC text all right-hand words from the real-word error list by  

# the left-hand corresponding word. 

 

$text = $ARGV[0]; 

$list = "confulist.txt"; 

#$newtext = "> result.txt"; 

$wordfile = "> $text."."replacements.txt"; 

 



Context-sensitive spell checking  Appendices  
 
  

 A13

open(INT, $text) || die "cannot open text $text\n"; 

open(INL, $list) || die "cannot open list $list\n"; 

#open(OUTT, $newtext) || die "cannot open outfile\n"; 

open(OUTW, $wordfile) || die "cannot open word outfile\n"; 

 

@lefts = @rights = ""; 

 

while ($listline=<INL>) { 

 @parts = split(/\t/,$listline); 

 $left = $parts[0]; 

 $right = $parts[1]; 
 @lefts = (@lefts, $left); 

 @rights = (@rights, $right); 

 } 

 

#for ($i=0;$i<100;$i++) { 

# print "$lefts[$i]\t$rights[$i]\n"; 

#} 

 

$ne = @rights; 

$count = 0; 

while ($textline=<INT>) { 

 @words = split(/\s/,$textline); 

 foreach $word(@words) { 

  foreach ($i=0;$i<$ne;$i++) { 

   if ($word eq $rights[$i]) { 

    print OUTW "$word replaced by $lefts[$i] in\n 

$textline\n"; 

    $count++; 

    $textline =~ s/\b$word\b/$lefts[$i]/; 

    # print $textline; 

   } 

  } 

 } 

print $textline; 

}  

#print "number of replacements: $count\n"; 

 
5. The Perl program for compiling a list of erroneous trigrams  

 
#! usr/local/bin/perl 

 

# select from the original text and the text containing errors all trigrams 

# that are different from each other. Output: a file containing two  

# columns. Left: erroneous trigram. Right: original trigram. 
 

$forig = "$ARGV[0]"; 

$ferror = "$ARGV[1]"; 

 

print "$fnorm\n"; 



Context-sensitive spell checking  Appendices  
 
  

 A14

 

open(IN1,$forig); 

open(IN2,$ferror); 

 

while ($rule1 = <IN1>) { 

  

 chomp $rule1; 

 # lowercase the text: 

        $rule1 =~ s/.*/\L$&/; 

        #change all nonword characters to space: 

        $rule1 =~ s/[^\w']/ /g; 
        #remove double spacing: 

        $rule1 =~ s/[ ]{2,4}/ /g; 

 $long1 .= $rule1; 

} 

 

#print "\n long: $long1\n"; 

 

@words1 = split(/\s+/,$long1); 

#foreach $i (@words1) { 

# print "$i\n"; 

#} 

 

while ($rule2 = <IN2>) {  

 

        chomp $rule2; 

 # lowercase the text: 

        $rule2 =~ s/.*/\L$&/; 

        #change all nonword characters to space: 

        $rule2 =~ s/[^\w']/ /g; 

        #remove double spacing: 

        $rule2 =~ s/[ ]{2,4}/ /g; 

 $long2 .= $rule2;  

} 

 

@words2 = split(/\s+/,$long2); 

 

#print "\n"; 

$ne1 = @words1; 

#print "$ne1\n"; 

$ne2 = @words2; 

#print "$ne2\n"; 

 

 

for ($i=0;$i<=$ne1;$i++) { 

 if ($words1[$i] ne $words2[$i]) { 

  print "$words2[$i-2] $words2[$i-1] $words2[$i]\t$words1[$i-2] 

$words1[$i-1] $words1[$i]\n"; 

  print "$words2[$i-1] $words2[$i] $words2[$i+1]\t$words1[$i-1] 

$words1[$i] $words1[$i+1]\n"; 

  print "$words2[$i] $words2[$i+1] $words2[$i+2]\t$words1[$i] 

$words1[$i+1] $words1[$i+2]\n"; 



Context-sensitive spell checking  Appendices  
 
  

 A15

 }  

}  

 

6. The Perl program for counting the average number of suggestions 

 
#! usr/bin/perl 

 

# Counts the average number of suggestions per detected trigram 

 

$file = "total.result2"; 

open(IN,$file); 

 
$count_detect = 0; 

$count_suggest = 0; 

 

while ($rule = <IN>) { 

 if ($rule =~ /error detected/) { 

  $count_detect++; 

 } 

 if ($rule =~ /suggestion\:/) { 

  $count_suggest++; 

 } 

} 

print "detected: $count_detect\n"; 

print "suggestions: $count_suggest\n"; 

$average =  $count_suggest/$count_detect; 

print "average: $average\n"; 

close(IN); 

 
7. The Perl program for evaluating the output files of the context-sensitive spell checker 

 
#! user/bin/perl 

 

# compares the list of corresponding erroneous and original trigrams with 

# the output file from the speller in order to interpret the output of the  

# context-sensitive spell checker. 

 

$errortrigramlist = $ARGV[0]; 

$result = $ARGV[1]; 

 

open(IN1,$errortrigramlist) || die "cannot open errortrigramlist"; 

 

$nr_errgrams = -1; # (there is always one empty rule) 

 

while ($rule1=<IN1>) { 

  
 # lowercase the text of the trigramlist: 

 $rule1 =~ s/.*/\L$&/; 

 #change all nonword characters to space: 



Context-sensitive spell checking  Appendices  
 
  

 A16

 $rule1 =~ s/[^\w^\n^\t']/ /g; 

 #remove double spacing: 

 $rule1 =~ s/[ ]{2,4}/ /g; 

 #print $rule1; 

 

 @parts1 = split (/\t/,$rule1); 

 $errorgram = $parts1[0]; 

 $correctgram = $parts1[1]; 

 $trigramset{$errorgram} = $correctgram; 

 $nr_errgrams++; 

} 
 

#printing the associative array: 

#foreach $key (keys(%trigramset)) { 

# print "$key $trigramset{$key}"; 

#} 

 

open(IN2,$result) || die "cannot open resultfile"; 

 

$nr_correct_sugg = 0; 

 

while ($rule2=<IN2>) { 

 if ($rule2 =~ /real-word error detected:/) { 

  @parts2 = split (/\:\s/,$rule2); 

  $detectedgram = $parts2[1]; 

  #print "detected trigram: $detectedgram"; 

  chop ($detectedgram); 

   

  #foreach $key (keys(%trigramset)) { 

  # if ($key eq $detectedgram) { 

  #  print "$detectedgram\t $key\n"; 

  # } 

  #} 

  #print "correct trigram: $trigramset{$detectedgram}"; 

   

  # find the correct suggestion with a detected gram: 

 

  $found_correct = 0; 

  open(IN3,$result) || die "cannot open resultfile second time"; 

  while ($rule3=<IN3>) { 

   if ($rule3 =~ /$detectedgram/) { # when the point of 

detection is encountered... 

      $nextrule = <IN3>; 

      # ... walk through all suggestions below: 

                     while ($nextrule =~ /suggestion\:/) { 

                         #print $nextrule; 

                         @partssugg = split(/\:\s/,$nextrule); 

                         $sugggram = $partssugg[1]; 

                         chop ($sugggram); 

                         #print "suggestion: $sugggram\n"; 

    # check whether the suggestion is the original 

trigram: 



Context-sensitive spell checking  Appendices  
 
  

 A17

                         if ($trigramset{$detectedgram} eq "$sugggram\n") { 

                                 #print "correct suggestion: $sugggram\n"; 

                                 $nr_correct_sugg++; 

                                 $found_correct = 1; 

                         } 

                         $nextrule = <IN3>; 

                     } 

  

   } 

  } 

  close(IN3); 
  if ($found_correct == 0) { # then the correct suggestion was not 

among the suggestions 

                               # print "no correct suggestion found\n"; 

                } 

 

 } 

}  

 

close(IN2); 

 

 

open(IN4,$result) || die "cannot open resultfile"; 

 

#put all detected trigrams in an array: 

$i=0; 

while ($rule4=<IN4>) { 

 if ($rule4 =~ /real-word error detected:/) { 

              @parts4 = split (/\:\s/,$rule4); 

              $detectedgram2 = $parts4[1]; 

       chop($detectedgram2); 

              $detectedarray[$i] = $detectedgram2; 

       $i++ 

 } 

} 

 

$nr_detected = @detectedarray; 

 

close(IN4); 

 

# compute the number of detected trigrams that is indeed  

# erroneous for computing the precision... from here... 

 

$nr_detected_err = 0; 

$nr_false_hits = 0; 

 

foreach $i (@detectedarray) { 

 $false_hit = 1; 

 foreach $error (keys(%trigramset)) { 

  if ($i eq $error) { 

   #print "$i correctly detected\n"; 

   $nr_detected_err++; 



Context-sensitive spell checking  Appendices  
 
  

 A18

   $false_hit = 0; 

  } 

 } 

 if ($false_hit == 1) { 

  print "false hit: $i\n"; 

  $nr_false_hits++; 

 } 

}  

 

# ... to here 

 
print "number of erroneous trigrams: $nr_errgrams\n"; #number of UNIQUE 

erroneous trigrams 

print "number of trigrams detected: $nr_detected\n"; 

print "number of correct suggestions: $nr_correct_sugg\n"; 

print "number of detected trigrams that is indeed erroneous: 

$nr_detected_err\n"; 

print "number of false hits: $nr_false_hits\n"; 

 

$recall = $nr_detected_err / $nr_errgrams; 

$recall_suggestions = $nr_correct_sugg / $nr_errgrams; 

$precision = $nr_detected_err / $nr_detected; 

printf "recall (nr of correctly detected / nr of erroneous trigrams) is 

%4.2f\n", $recall; 

printf "recall_suggestions (nr of correct suggestions / nr of erroneous 

trigrams) is %4.2f\n", $recall_suggestions; 

printf "precision (nr of correctly detected / nr of total detected) is 

%4.2f\n", $precision; 

print "if there are no false hits, precision is 1.00 and vice versa\n"; 



Context-sensitive spell checking  Appendices  
 
  

 A19

 

Appendix V � Format of output file from context-sensitive spell checker 

 
real-word error detected: describe an number 

suggestion: decline a number 

suggestion: describe a number 

suggestion: described a number 

suggestion: describes a number 

real-word error detected: teaching methods ad 

suggestion: teaching method and 

suggestion: teaching method as 

suggestion: teaching methods a 

suggestion: teaching methods an 

suggestion: teaching methods and 

suggestion: teaching methods as 

real-word error detected: methods ad media 

suggestion: methods and media 

real-word error detected: ad media these 

suggestion: and edit these 

suggestion: and media these 

suggestion: as media there 

real-word error detected: these will by 

suggestion: chest wall by 
suggestion: chose well my 

suggestion: here bill my 

suggestion: here well my 

suggestion: here will be 

suggestion: house wall b 

suggestion: house wall by 

suggestion: house will be 

suggestion: house will my 

suggestion: thee will be 

suggestion: theme will be 

suggestion: there swill be 

suggestion: there will be 

suggestion: there will my 

suggestion: these will be 

suggestion: those will be 

real-word error detected: will by considered 

suggestion: well be considered 

suggestion: will be conditioned 

suggestion: will be considered 

suggestion: will be positioned 

 
 
 


